Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Stanford researchers discover the 'anternet'
by Bjorn Carey for Stanford News
Stanford CA (SPX) Aug 31, 2012


Harvester ant foragers waiting inside the nest.

On the surface, ants and the Internet don't seem to have much in common. But two Stanford researchers have discovered that a species of harvester ants determine how many foragers to send out of the nest in much the same way that Internet protocols discover how much bandwidth is available for the transfer of data. The researchers are calling it the "anternet."

Deborah Gordon, a biology professor at Stanford, has been studying ants for more than 20 years. When she figured out how the harvester ant colonies she had been observing in Arizona decided when to send out more ants to get food, she called across campus to Balaji Prabhakar, a professor of computer science at Stanford and an expert on how files are transferred on a computer network. At first he didn't see any overlap between his and Gordon's work, but inspiration would soon strike.

"The next day it occurred to me, 'Oh wait, this is almost the same as how [Internet] protocols discover how much bandwidth is available for transferring a file!'" Prabhakar said. "The algorithm the ants were using to discover how much food there is available is essentially the same as that used in the Transmission Control Protocol."

Transmission Control Protocol, or TCP, is an algorithm that manages data congestion on the Internet, and as such was integral in allowing the early web to scale up from a few dozen nodes to the billions in use today. Here's how it works: As a source, A, transfers a file to a destination, B, the file is broken into numbered packets. When B receives each packet, it sends an acknowledgment, or an ack, to A, that the packet arrived.

This feedback loop allows TCP to run congestion avoidance: If acks return at a slower rate than the data was sent out, that indicates that there is little bandwidth available, and the source throttles data transmission down accordingly. If acks return quickly, the source boosts its transmission speed. The process determines how much bandwidth is available and throttles data transmission accordingly.

It turns out that harvester ants (Pogonomyrmex barbatus) behave nearly the same way when searching for food. Gordon has found that the rate at which harvester ants - which forage for seeds as individuals - leave the nest to search for food corresponds to food availability.

A forager won't return to the nest until it finds food. If seeds are plentiful, foragers return faster, and more ants leave the nest to forage. If, however, ants begin returning empty handed, the search is slowed, and perhaps called off.

Prabhakar wrote an ant algorithm to predict foraging behavior depending on the amount of food - i.e., bandwidth - available. Gordon's experiments manipulate the rate of forager return. Working with Stanford student Katie Dektar, they found that the TCP-influenced algorithm almost exactly matched the ant behavior found in Gordon's experiments.

"Ants have discovered an algorithm that we know well, and they've been doing it for millions of years," Prabhakar said.

They also found that the ants followed two other phases of TCP. One phase is known as slow start, which describes how a source sends out a large wave of packets at the beginning of a transmission to gauge bandwidth; similarly, when the harvester ants begin foraging, they send out foragers to scope out food availability before scaling up or down the rate of outgoing foragers.

Another protocol, called time-out, occurs when a data transfer link breaks or is disrupted, and the source stops sending packets. Similarly, when foragers are prevented from returning to the nest for more than 20 minutes, no more foragers leave the nest.

Prabhakar said that had this discovery been made in the 1970s, before TCP was written, harvester ants very well could have influenced the design of the Internet.

Gordon thinks that scientists have just scratched the surface for how ant colony behavior could help us in the design of networked systems.

There are 11,000 species of ants, living in every habitat and dealing with every type of ecological problem, Gordon said. "Ants have evolved ways of doing things that we haven't thought up, but could apply in computer systems. Computationally speaking, each ant has limited capabilities, but the collective can perform complex tasks.

"So ant algorithms have to be simple, distributed and scalable - the very qualities that we need in large engineered distributed systems," she said. "I think as we start understanding more about how species of ants regulate their behavior, we'll find many more useful applications for network algorithms."

The work is published in the Aug. 23 issue of PLoS Computational Biology.

.


Related Links
Stanford
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Bigger creatures live longer, travel farther for a reason
Durham NC (SPX) Aug 30, 2012
A long-standing mystery in biology about the longer lifespans of bigger creatures may be explained by the application of a physical law called the Constructal Law. What this law proposes is that anything that flows - a river, bloodstream or highway network - will evolve toward the same basic configuration out of a need to be more efficient. And, as it turns out, that same basic law applies ... read more


FLORA AND FAUNA
First-Stage Fuel Loaded; Launch Weather Forecast Improves

NASA launches mission to explore radiation belts

ISRO to score 100 with a cooperative mission Sep 9

NASA Administrator Announces New Commercial Crew And Cargo Milestones

FLORA AND FAUNA
Marks of Laser Exam on Martian Soil

Opportunity Drives And Images Rock Outcrop

Opportunity Exceeds 35 Kilometers of Driving!

Mars suitable for colonization

FLORA AND FAUNA
Walls of Lunar Crater May Hold Patchy Ice, LRO Radar Finds

Russia's moonshot hope 'not a dream'

A "Blue Moon" Heralds the Harvest

New research eclipses existing theories on moon formation

FLORA AND FAUNA
The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

Hubble Discovers a Fifth Moon Orbiting Pluto

FLORA AND FAUNA
How Old are the First Planets?

Kepler discovers planetary system orbiting 2 suns

NASA, Texas astronomers find first multi-planet system around a binary star

Planet search moves to Antarctica

FLORA AND FAUNA
Russian Companies Design Space Tour Plane

Dream Chaser Team Completes Milestone

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

FLORA AND FAUNA
China eyes next lunar landing as US scales back

China unveils ambitious space projects

Is China Going to Blast Past America in Space?

Hong Kong people share joy of China's manned space program

FLORA AND FAUNA
NASA's Dawn Prepares for Trek Toward Dwarf Planet

Dawn Engineers Assess Reaction Wheel

Dawn Completes Intensive Phase Of Vesta Exploration

Planetary Resources Announces Agreement with Virgin Galactic for Payload Services




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement