Space Travel News  
INTERNET SPACE
Stanford Researchers Develop Wireless Technology For Faster Networks

illustration only
by Sandeep Ravindran
Stanford CA (SPX) Feb 21, 2011
"Wireless communication is a one-way street. Over." Radio traffic can flow in only one direction at a time on a specific frequency, hence the frequent use of "over" by pilots and air traffic controllers, walkie-talkie users and emergency personnel as they take turns speaking.

But now, Stanford researchers have developed the first wireless radios that can send and receive signals at the same time.

This immediately makes them twice as fast as existing technology, and with further tweaking will likely lead to even faster and more efficient networks in the future.

"Textbooks say you can't do it," said Philip Levis, assistant professor of computer science and of electrical engineering. "The new system completely reworks our assumptions about how wireless networks can be designed," he said.

Cell phone networks allow users to talk and listen simultaneously, but they use a work-around that is expensive and requires careful planning, making the technique less feasible for other wireless networks, including Wi-Fi.

Sparked from a simple idea
A trio of electrical engineering graduate students, Jung Il Choi, Mayank Jain and Kannan Srinivasan, began working on a new approach when they came up with a seemingly simple idea. What if radios could do the same thing our brains do when we listen and talk simultaneously: screen out the sound of our own voice?

In most wireless networks, each device has to take turns speaking or listening. "It's like two people shouting messages to each other at the same time," said Levis. "If both people are shouting at the same time, neither of them will hear the other."

It took the students several months to figure out how to build the new radio, with help from Levis and Sachin Katti, assistant professor of computer science and of electrical engineering.

Their main roadblock to two-way simultaneous conversation was this: Incoming signals are overwhelmed by the radio's own transmissions, making it impossible to talk and listen at the same time.

"When a radio is transmitting, its own transmission is millions, billions of times stronger than anything else it might hear [from another radio]," Levis said. "It's trying to hear a whisper while you yourself are shouting."

But, the researchers realized, if a radio receiver could filter out the signal from its own transmitter, weak incoming signals could be heard. "You can make it so you don't hear your own shout and you can hear someone else's whisper," Levis said.

Their setup takes advantage of the fact that each radio knows exactly what it's transmitting, and hence what its receiver should filter out. The process is analogous to noise-canceling headphones.

When the researchers demonstrated their device last fall at MobiCom 2010, an international gathering of more than 500 of the world's top experts in mobile networking, they won the prize for best demonstration.

Until then, people didn't believe sending and receiving signals simultaneously could be done, Jain said. Levis said a researcher even told the students their idea was "so simple and effective, it won't work," because something that obvious must have already been tried unsuccessfully.

Breakthrough for communications technology
But work it did, with major implications for future communications networks. The most obvious effect of sending and receiving signals simultaneously is that it instantly doubles the amount of information you can send, Levis said. That means much-improved home and office networks that are faster and less congested.

But Levis also sees the technology having larger impacts, such as overcoming a major problem with air traffic control communications. With current systems, if two aircraft try to call the control tower at the same time on the same frequency, neither will get through. Levis says these blocked transmissions have caused aircraft collisions, which the new system would help prevent.

The group has a provisional patent on the technology and is working to commercialize it. They are currently trying to increase both the strength of the transmissions and the distances over which they work. These improvements are necessary before the technology is practical for use in Wi-Fi networks.

But even more promising are the system's implications for future networks. Once hardware and software are built to take advantage of simultaneous two-way transmission, "there's no predicting the scope of the results," Levis said.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
-
Satellite-based Internet technologies



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


INTERNET SPACE
Republicans seek to quash 'net neutrality' rules
Washington (AFP) Feb 17, 2011
Republican lawmakers Thursday rebuked US telecom regulators for implementing a "net neutrality" policy aimed at guaranteeing open Internet access. The House of Representatives passed an amendment that would prohibit the Federal Communications Commission from using funds to implement the rules, which bar owners of high-speed lines and airwaves from favoring their own services over those of co ... read more







INTERNET SPACE
SpaceX to focus on astronaut capsule

ILS Appoints Vice President Of Sales Marketing And Communications

Ariane 5's Mission With The Automated Transfer Vehicle Is Postponed

Ariane 5 Ready For Launch Of Automated Transfer Vehicle Johannes Kepler

INTERNET SPACE
Advanced NASA Instrument Gets Close-up On Mars Rocks

Good Health Report After Hiatus In Communications

Experiment volunteers take 2nd 'walk on Mars'

Walking On Mars

INTERNET SPACE
84 Student Teams Set to Roll At 18th Annual NASA Great Moonbuggy Race

Google Lunar X Prize Roster Reaches 29 Teams

Waiter, There's Metal In My Moon Water

Japan eyes humanoid robot mission in space

INTERNET SPACE
Can WISE Find The Hypothetical Tyche In Distant Oort Cloud

Theory: Solar system has another planet

Launch Plus Five Years: A Ways Traveled, A Ways To Go

Mission To Pluto And Beyond Marks 10 Years Since Project Inception

INTERNET SPACE
Back To The Roots Of The Solar System

Direct Images Of Disks Unravel Mystery Of Planet Formation

New Instrument Will Help Confirm Kepler Planet Finds

NASA Finds Earth-Size Planet Candidates In Habitable Zone

INTERNET SPACE
University of Ulster Launches Rocket Project with Japan Space Agency

ATK And Astrium Unveil Liberty Rocket For NASA CCDev-2 Competition

Renewed Call For Competitive US Spaceflight Marketplace

Rocket Team Hot Fire AJ26 Flight Engine For Taurus II

INTERNET SPACE
China Mars probe set for November launch

Shenzhou 8 Mission Could Top Three Weeks

U.S. wary of China space weapons

Slow progress in U.S.-China space efforts

INTERNET SPACE
NASA Releases Images Of Man-Made Crater On Comet

Spectacular Flyby Of Comet Tempel 1 Tests Lockheed Built Spacecraft

NASA'S Stardust Spacecraft Completes Comet Flyby

NASA spacecraft unravels comet mystery


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement