Subscribe free to our newsletters via your
. Space Travel News .




TIME AND SPACE
Squeezed quantum cats
by Staff Writers
Zurich, Switzerland (SPX) May 29, 2015


The scientists used this ion trap to create the new quantum states. Image courtesy ETH Zurich. For a larger version of this image please go here.

Quantum physics is full of fascinating phenomena. Take, for instance, the cat from the famous thought experiment by the physicist Erwin Schrodinger. The cat can be dead and alive at once, since its life depends on the quantum mechanically determined state of a radioactively decaying atom which, in turn, releases toxic gas into the cat's cage. As long as one hasn't measured the state of the atom, one knows nothing about the poor cat's health either - atom and kitty are intimately "entangled" with each other.

Equally striking, if less well known, are the so-called squeezed quantum states: Normally, Heisenberg's uncertainty principle means that one cannot measure the values of certain pairs of physical quantities, such as the position and velocity of a quantum particle, with arbitrary precision.

Nevertheless, nature allows a barter trade: If the particle has been appropriately prepared, then one of the quantities can be measured a little more exactly if one is willing to accept a less precise knowledge of the other quantity. In this case the preparation of the particle is known as "squeezing" because the uncertainty in one variable is reduced (squeezed).

Schrodinger's cat and squeezed quantum states are both important physical phenomena that lie at the heart of promising technologies of the future. Researchers at the ETH were now able successfully to combine both in a single experiment.

Squeezing and shifting
In their laboratory, Jonathan Home, professor of experimental quantum optics and photonics, and his colleagues catch a single electrically charged calcium ion in a tiny cage made of electric fields. Using laser beams they cool the ion down until it hardly moves inside the cage.

Now the researchers reach into their bag of tricks: they "squeeze" the state of motion of the ion by shining laser light on it and by skilfully using the spontaneous decay of its energy states. Eventually the ion's wave function (which corresponds to the probability of finding it at a certain point in space) is literally squashed: now the physicists have a better idea of where the ion is located in space, but the uncertainty in its velocity has increased proportionately.

"This state squeezing is an important tool for us", Jonathan Home explains. "Together with a second tool - the so-called state-dependent forces - we are now able to produce a "squeezed Schrodinger cat" ".

To that end the ion is once more exposed to laser beams that move it to the left or to the right. The direction of the forces induced by the laser depends on the internal energy state of the ion. This energy state can be represented by an arrow pointing up or down, also called a spin. If the ion is in an energy superposition state composed of "spin up" and "spin down", the force acts both to the left and to the right.

In this way, a peculiar situation is created that is similar to Schrodinger's cat: the ion now finds itself in a hybrid state of being on the right (cat is alive) and on the left (cat is dead) at the same time. Only when one measures the spin does the ion decide whether to be on the right or on the left.

Stable cats for quantum computers
The Schrodinger cat prepared by professor Home and his collaborators is special in that the initial squeezing makes the ion states "left" and "right" particularly easy to distinguish. At the same time, it is also pretty large as the two ion states are far apart. "Even without the squeezing our "cat" is the largest one produced to date", Home points out.

"With the squeezing, the states "left" and "right" are even more distinguishable - they are as much as sixty times narrower than the separation between them".

All this isn't just about scientific records, however, but also about practical applications. Squeezed Schrodinger cats are particularly stable against certain types of disturbances that would normally cause the cats to lose their quantum properties and become ordinary felines. That stability could, for instance, be exploited in order to realize quantum computers, which use quantum superposition states to do their calculations. Furthermore, ultra-precise measurements could be made less sensitive to unwanted external influences.

Lo HY, Kienzler D, de Clercq L, Marinelli M, Negnevitsky V, Keitch, BC, Home JP: Spin-motion entanglement and state diagnosis with squeezed oscillator wavepackets. Nature, 21 May 2015, doi: 10.1038/nature14458


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
On-demand X-rays at synchrotron light sources
Berkeley CA (SPX) May 28, 2015
Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources are welcoming an era of "on-demand" X-rays, in which they have access to the light beams they want thanks to a technique developed at the U.S. Department of Energy (DOE)'s Lawrence Berkeley Nat ... read more


TIME AND SPACE
Air Force Certifies SpaceX for National Security Space Missions

Recent Proton loss to push up launch costs warns manufacturer

SpaceX cleared for US military launches

Ariane 5's second launch of 2015

TIME AND SPACE
NASA Begins Testing Next Mars Lander Insight

The Supreme Council of Parachute Experts

Science Drives NASA's Journey to Mars

The Moon or Mars: Flawed Debate, False Choice - Part One

TIME AND SPACE
Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

TIME AND SPACE
New Horizons team completes first search for Pluto system hazards

New Horizons sees more detail as it draws closer to Pluto

NASA's New Horizons Spots Pluto's Faintest Known Moons

Possible Polar Cap on Pluto Detected

TIME AND SPACE
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

TIME AND SPACE
The Newest RS-25 Joins the Space Launch System Family

Journey to Space in a Vacuum Chamber

Milestone Work Under Way on B-2 Test Stand

QM-1 Static Test - One Step Closer to Flight

TIME AND SPACE
China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

TIME AND SPACE
How comets were assembled

Dawn Spirals Closer to Ceres, Returns a New View

Ceres Bright Spots Seen Closer Than Ever

Ceres bright spots: Clearer pictures, but still no answers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.