Subscribe free to our newsletters via your
. Space Travel News .




FARM NEWS
Spinach power gets a big boost
by Staff Writers
Nashville TN (SPX) Sep 06, 2012


This is a biohybrid solar cell that uses the photosynthetic protein from spinach made by Vanderbilt students based on a previous design. Credit: Amrutur Anilkumar, Vanderbilt University.

An interdisciplinary team of researchers at Vanderbilt University have developed a way to combine the photosynthetic protein that converts light into electrochemical energy in spinach with silicon, the material used in solar cells, in a fashion that produces substantially more electrical current than has been reported by previous "biohybrid" solar cells.

The research was reported online in the journal Advanced Materials and Vanderbilt has applied for a patent on the combination.

"This combination produces current levels almost 1,000 times higher than we were able to achieve by depositing the protein on various types of metals. It also produces a modest increase in voltage," said David Cliffel, associate professor of chemistry, who collaborated on the project with Kane Jennings, professor of chemical and biomolecular engineering.

"If we can continue on our current trajectory of increasing voltage and current levels, we could reach the range of mature solar conversion technologies in three years."

The researchers' next step is to build a functioning PS1-silicon solar cell using this new design. Jennings has an Environmental Protection Agency award that will allow a group of undergraduate engineering students to build the prototype. The students won the award at the National Sustainable Design Expo in April based on a solar panel that they had created using a two-year old design.

With the new design, Jennings estimates that a two-foot panel could put out at least 100 milliamps at one volt - enough to power a number of different types of small electrical devices.

More than 40 years ago, scientists discovered that one of the proteins involved in photosynthesis, called Photosystem 1 (PS1), continued to function when it was extracted from plants like spinach.

Then they determined PS1 converts sunlight into electrical energy with nearly 100 percent efficiency, compared to conversion efficiencies of less than 40 percent achieved by manmade devices. This prompted various research groups around the world to begin trying to use PS1 to create more efficient solar cells.

Another potential advantage of these biohybrid cells is that they can be made from cheap and readily available materials, unlike many microelectronic devices that require rare and expensive materials like platinum or indium. Most plants use the same photosynthetic proteins as spinach. In fact, in another research project Jennings is working on a method for extracting PS1 from kudzu.

Since the initial discovery, progress has been slow but steady. Researchers have developed ways to extract PS1 efficiently from leaves. They have demonstrated that it can be made into cells that produce electrical current when exposed to sunlight. However, the amount of power that these biohybrid cells can produce per square inch has been substantially below that of commercial photovoltaic cells.

Another problem has been longevity. The performance of some early test cells deteriorated after only a few weeks. In 2010, however, the Vanderbilt team kept a PS1 cell working for nine months with no deterioration in performance. "Nature knows how to do this extremely well. In evergreen trees, for example, PS1 lasts for years," said Cliffel. "We just have to figure out how to do it ourselves."

The Vanderbilt researchers report that their PS1/silicon combination produces nearly a milliamp (850 microamps) of current per square centimeter at 0.3 volts. That is nearly two and a half times more current than the best level reported previously from a biohybrid cell.

The reason this combo works so well is because the electrical properties of the silicon substrate have been tailored to fit those of the PS1 molecule. This is done by implanting electrically charge atoms in the silicon to alter its electrical properties: a process called "doping." In this case, the protein worked extremely well with silicon doped with positive charges and worked poorly with negatively doped silicon.

To make the device, the researchers extracted PS1 from spinach into an aqueous solution and poured the mixture on the surface of a p-doped silicon wafer. Then they put the wafer in a vacuum chamber in order to evaporate the water away leaving a film of protein. They found that the optimum thickness was about one micron, about 100 PS1 molecules thick.

When a PS1 protein exposed to light, it absorbs the energy in the photons and uses it to free electrons and transport them to one side of the protein. That creates regions of positive charge, called holes, which move to the opposite side of the protein.

In a leaf, all the PS1 proteins are aligned. But in the protein layer on the device, individual proteins are oriented randomly. Previous modeling work indicated that this was a major problem. When the proteins are deposited on a metallic substrate, those that are oriented in one direction provide electrons that the metal collects while those that are oriented in the opposite direction pull electrons out of the metal in order to fill the holes that they produce.

As a result, they produce both positive and negative currents that cancel each other out to leave a very small net current flow. The p-doped silicon eliminates this problem because it allows electrons to flow into PS1 but will not accept them from protein. In this manner, electrons flow through the circuit in a common direction.

"This isn't as good as protein alignment, but it is much better than what we had before," said Jennings.

Graduate students Gabriel LeBlanc, Gongping Chen and Evan Gizzie contributed to the study. The research was supported by National Science Foundation grant EMR 0907619, NSF EPSCoR grant EPS 1004083 and by the Scialog Program of the Research Corporation for Scientific Advancement

.


Related Links
Vanderbilt University
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Bees, fruits and money
London, UK (SPX) Sep 06, 2012
Two thirds of the crops humans use for food production and the majority of wild plant species depend on pollination by insects such as bees and hover-flies. This ecosystem service, however, provided by nature to humans for free, is increasingly failing. As an example, after 3000 years of sustainable agriculture, farmers in the Chinese province Sichuan have to pollinate apple flowers themselves b ... read more


FARM NEWS
First-Stage Fuel Loaded; Launch Weather Forecast Improves

NASA launches mission to explore radiation belts

ISRO to score 100 with a cooperative mission Sep 9

NASA Administrator Announces New Commercial Crew And Cargo Milestones

FARM NEWS
NASA's Mars rover parked to test robotic arm

Curiosity Has a Photo Day

Marks of Laser Exam on Martian Soil

Opportunity Drives And Images Rock Outcrop

FARM NEWS
NASA's GRAIL Moon Twins Begin Extended Mission Science

Flags at half mast across US for Armstrong funeral

Walls of Lunar Crater May Hold Patchy Ice, LRO Radar Finds

Russia's moonshot hope 'not a dream'

FARM NEWS
The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

Hubble Discovers a Fifth Moon Orbiting Pluto

FARM NEWS
Birth of a planet

A Hot Potential Habitable Exoplanet around Gliese 163

NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars

How Old are the First Planets?

FARM NEWS
Russian Companies Design Space Tour Plane

Dream Chaser Team Completes Milestone

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

FARM NEWS
Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

China unveils ambitious space projects

FARM NEWS
US space probe leaves asteroid's orbit, NASA says

Dawn Of A New Mission To Proto Planet Ceres

NASA Announces Asteroid Naming Contest for Students

NASA's Dawn Prepares for Trek Toward Dwarf Planet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement