![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers East Lansing, MI (SPX) Oct 26, 2015
The concept that biodiversity feeds upon itself is not uncommon in the world of evolution. The problem is a lack of hard data that shows this process to be naturally occurring. However, recent research by a team of scientists, including a Michigan State University entomologist, finds that recent evolutionary changes - in this case in a new species of fruit fly - have an almost domino effect on a number of species. The research, published this week in the Proceedings of the National Academy of Sciences, follows up work done by the team several years ago that found changes in mating habits resulted not only in a new species of fruit fly, but also led to a new species of the parasitic wasps that prey on them. "The new study extends the earlier work by showing that new fruit fly species provide suitable habitat not just for one new parasitoid species, but for multiple new species," said James Smith, an MSU entomologist and professor in Lyman Briggs College. The fruit flies in question evolved into new species when they began laying their eggs and mating on apple trees, as opposed to their native hawthorn tree hosts. Three different kinds of parasitoid wasps were collected from a number of different fly host plant environments in the wild. Analyses in the lab showed that all three of the different kinds of wasps had diverged from others of the same kind, both genetically and with respect to host-associated physiology and behavior. "In a sense," Smith said, "they have caught an entire community of parasitoids actively ecologically diverging in response to a historically documented host plant shift of their fly host." These evolutionary changes, known as "sequential" or "cascading" events, may provide additional information helping explain why some groups of organisms, such as plants, the insects that feed on them and the parasites that attack the insects, are more diverse and species-rich than other groups. "Why are there so many insect species?" Smith asked. "Speciation cascades provide one explanation for how a lot of species might be generated in a relatively short period of time." Leading the project was Glen Hood from the lab of MSU alumnus Jeff Feder at the University of Notre Dame. Other members of the team were from the University of Iowa, the University of Florida and Rice University.
Related Links Michigan State University Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |