Space Travel News  
Speeding Up CT Scans By Using Telecommunications Tricks

Configuration of a conventional CT scanner. (b) The multiplexing CT scanner enables simultaneous collection of multiple images due to the multiplexing principle.
by Staff Writers
College Park MD (SPX) Jul 18, 2007
By borrowing techniques used in telecommunications technology, computed tomography (CT) scanners may eventually see data collection speeds increase by hundreds of times, leading to better images, faster imaging procedures, and potentially lower x-ray exposures. A University of North Carolina team has pioneered a method that collects images from many sources at once, instead of the current serial method of data collection.

UNC's Jian Zhang will discuss the technique at next week's annual meeting of the American Association of Physicists in Medicine in Minneapolis.

Modern CT scanners, widely used for diagnostic medical imaging and security screening, collect over 1,000 images in less than one second by high-speed rotation of an x-ray tube around the object. However, the data is collected in a serial fashion, essentially one piece of data at a time.

Multiplexing represents an innovative solution for potentially speeding up CT scans. A widely used concept in many communications-related fields, multiplexing is a process of combining multiple signals to form one composite signal for transmission.

For the multiplexing CT scanner, multiple x-ray sources fire simultaneously to capture images from multiple views at the same time.

In general, a factor of N/2 (N=total number of images) increase in the speed can be achieved using the multiplexing technique. For example, the speed of clinical CT scanners that acquire around 1,000 views per gantry rotation would increase by a factor of 500.

A team from the University of North Carolina, Chapel Hill, has been developing multiplexing CT scanners for several years. The team very recently created a 25-pixel multiplexing CT scanner, but engineering difficulties lie in front of the ultimate goal, a scanner with approximately 1,000 x-ray pixels.

According to team leader Jian Zhang, the cost of these machines would not rise significantly, as new technology enables hundreds of x-ray cathodes to be fabricated on a single silicon wafer.

Related Links
American Association of Physicists in Medicine (AAPM)
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Researchers Develop Tool For Clearer Ultrasound Images
Charlottesville, VA (SPX) Jul 18, 2007
University of Virginia Engineering School Associate Professor William F. Walker and Research Associate Francesco Viola have developed a new tool - an advanced imaging algorithm - that is, quite literally, transforming the way we see things. Together with graduate student Michael A. Ellis, biomedical engineering team has created an innovative method of signal processing that can be used with a broad range of imaging and sensing systems including ultrasound, RADAR, SONAR, telecommunications, and even a few optical imaging systems.







  • Ares Team Validates Manufacturing Processes For Common Bulkhead Demonstration
  • NASA Awards Upper Stage Engine Contract For Ares Rockets
  • ATV Starts Journey To Kourou
  • Boeing To Bid For Ares I Instrument Unit Avionics Contract

  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October
  • Russia Proton-M Booster Puts US Satellite Into Orbit

  • Space Shuttle Endeavour Moved To Launch Pad
  • Improved Shuttle Readied For Trip To Space Station
  • NASA Shuttle Endeavour Set To Launch August 7
  • Shuttle Endeavour To Move To Pad Crew Ready For Countdown Test

  • Station Crew Prepares For Spacewalk And STS-118 Shuttle Endeavour Mission
  • Atlantis Readies For Columbus Mission
  • Space Station Crew Gets Rid Of Trash
  • Progress Spacecraft To Bring Computer Equipment To ISS In August

  • Washington Conference To Examine Impact Of Civilian Space Travel On Culture And Economy
  • First Malaysian Astronaut To Take Off For Space Station October 10
  • Wyle To Prepare First Passengers For Virgin Galactic Maiden Spaceflight
  • Russia Launches Genesis 2 On Converted SS-18 ICBM Launcher

  • Dongfanghong 4 Ready For More International Satellite Orders
  • China To Launch Third Sino-Brazilian Satellite In September
  • China Launches Satellite To Take TV Signal Nationwide
  • China Launches Communications Satellite SinoSat-3

  • Lockheed Martin Reaches Major Milestone For The Mule Robotic Vehicle Engineering Evaluation Unit
  • Eurobot Makes A Splash
  • Team SpelBots Take On Robotic Titans At RoboCup 2007
  • Japanese Humanoid Is Working In The Rain

  • MDA Secures Role On Preparations For European Mars Rover Mission
  • Opportunity Waiting For Dust To Settle
  • Hunt For Life On Mars Goes Underground In New NASA Mission
  • The Origin Of Perennial Water-Ice At The South Pole Of Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement