Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
Solar power's future brawl
by Staff Writers
Washington DC (SPX) Oct 03, 2013


Amorphous Silicon nanowire (yellow network) facilitates harvesting of solar energy in the form of a photon (wavy line). In the process of light absorption a pair of mobile charge carriers is created (red clouds depict an electron smeared in space, while the blue clouds visualize the so-called hole which is a positively charged carrier). The energy of their directed motion is then transformed into electricity. Electron and hole charge distributions are often located in different regions of space due to multiple structural defects in amorphous silicon nanowires.Credit: A.Kryjevski, S.Kilina and D.Kilin/JRSE.

A trio of researchers at North Dakota State University and the University of South Dakota have turned to computer modeling to help decide which of two competing materials should get its day in the sun as the nanoscale energy-harvesting technology of future solar panels -- quantum dots or nanowires.

Andrei Kryjevski and his colleagues, Dimitri Kilin and Svetlana Kilina, report in AIP Publishing's Journal of Renewable and Sustainable Energy that they used computational chemistry models to predict the electronic and optical properties of three types of nanoscale (billionth of a meter) silicon structures with a potential application for solar energy collection: a quantum dot, one-dimensional chains of quantum dots and a nanowire.

The ability to absorb light is substantially enhanced in nanomaterials compared to those used in conventional semiconductors. Determining which form -- quantum dots or nanowire -- maximizes this advantage was the goal of the numerical experiment conducted by the three researchers.

"We used Density Functional Theory, a computational approach that allows us to predict electronic and optical properties that reflect how well the nanoparticles can absorb light, and how that effectiveness is affected by the interaction between quantum dots and the disorder in their structures," Kryjevski said.

"This way, we can predict how quantum dots, quantum dot chains and nanowires will behave in real life even before they are synthesized and their working properties experimentally checked."

The simulations made by Kryjevski, Kilin and Kilina indicated that light absorption by silicon quantum dot chains significantly increases with increased interactions between the individual nanospheres in the chain.

They also found that light absorption by quantum dot chains and nanowires depends strongly on how the structure is aligned in relation to the direction of the photons striking it.

Finally, the researchers learned that the atomic structure disorder in the amorphous nanoparticles results in better light absorption at lower energies compared to crystalline-based nanomaterials.

"Based on our findings, we believe that putting the amorphous quantum dots in an array or merging them into a nanowire are the best assemblies for maximizing the efficiency of silicon nanomaterials to absorb light and transport charge throughout a photovoltaic system," Kryjevski said.

"However, our study is only a first step in a comprehensive computational investigation of the properties of semiconductor quantum dot assemblies.

"The next steps are to build more realistic models, such as larger quantum dots with their surfaces covered by organic ligands and simulate the processes that occur in actual solar cells," he added.

The article, "Amorphous Silicon Nanomaterials: Quantum Dots Versus Nanowires" by Andrei Kryjevski, Dmitri Kilin and Svetlana Kilina, appears in the Journal of Renewable and Sustainable Energy.

.


Related Links
American Institute of Physics
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Global Solar Installation Growth Set to Hit Three-Year High in 2014
London, UK (SPX) Oct 03, 2013
Global photovoltaic (PV) installations are forecast to rise at the fastest pace in three years in 2014, exceeding 40 gigawatts (GW) for this first time and generating installation revenue of more than $86 billion, according to IHS. Annual solar installations are predicted to expand at a rate of 18 percent in 2014, reaching 41 GW and firmly marking the end of the solar industry's two-year s ... read more


SOLAR DAILY
Milky Way-mapping Gaia receives its sunshield

Arianespace's next Ariane 5 mission will serve two key customers: SES and HISPASAT

After Successful Spacecraft Docking, US Orbits Five Satellites

US private spacecraft company SpaceX launches upgraded Falcon rocket

SOLAR DAILY
NASA Mars mission escapes government shutdown, will launch

European rover meant for Mars to undergo earthly desert test

First ARCA flight in the ExoMars Program completed successfully

A Seasonal Ozone Layer Over The Martian South Pole

SOLAR DAILY
China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

Mighty Eagle Improves Autonomous Landing Software With Successful Flight

Watch Out for the Harvest Moon

SOLAR DAILY
New Horizons - Late in Cruise, and a Binary Ahoy

Pluto Science Conference Exceeds Expectations

SciTechTalk: Grab your erasers, there are more moons than we thought

NASA Hubble Finds New Neptune Moon

SOLAR DAILY
Kepler Finds First Signs of Other Earths

Nearby binary star system gets officially confirmed third member

Astronomers create first cloud map of distant planet

How Engineers Revamped Spitzer to Probe Exoplanets

SOLAR DAILY
Proton booster back in service after mishap

XCOR And ULA Complete Critical Milestone In Liquid Hydrogen Engine Program

Boeing and Aerojet Rocketdyne Test CST-100 Thrusters

NEXT Provides Lasting Propulsion and High Speeds for Deep Space Missions

SOLAR DAILY
Onward and upward as China marks 10 years of manned spaceflight

Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

SOLAR DAILY
Dawn Reality-Checks Telescope Studies of Asteroids

Dawn Marks Six Years In Space

Amateur Astronomers See Comet ISON

NASA Highlights Asteroid Grand Challenge at World Maker Faire




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement