Space Travel News  
SOLAR DAILY
Solar evaporator offers a fresh route to fresh water
by Staff Writers
College Park MD (SPX) Apr 17, 2019

A self-cleaning device made of wood aims to make small-scale desalination more practical.

About a billion people around the world lack access to safe drinking water. Desalinating salty water into drinkable water can help to fill this dangerous gap. But traditional desalination systems are far too expensive to install and operate in many locations, especially in low-income countries and remote areas.

Now researchers at the University of Maryland's A. James Clark School of Engineering have demonstrated a successful prototype of one critical component for affordable small-scale desalination: an inexpensive solar evaporator, made of wood. The evaporator generates steam with high efficiency and minimal need for maintenance, says Liangbing Hu, associate professor of materials science and engineering and affiliate of the Maryland Energy Innovation Institute.

The design employs a technique known as interfacial evaporation, "which shows great potential in response to global water scarcity because of its high solar-to-vapor efficiency, low environmental impact, and portable device design with low cost," Hu says. "These features make it suitable for off-grid water generation and purification, especially for low-income countries."

Interfacial evaporators are made of thin materials that float on saline water. Absorbing solar heat on top, the evaporators continuously pull up the saline water from below and convert it to steam on their top surface, leaving behind the salt, explains Hu, who is senior author on a paper describing the work in Advanced Materials.

However, over time salt can build up on this evaporative surface, gradually degrading performance until it is removed, he says.

Hu and his colleagues minimized the need for this maintenance with a device made out of basswood that exploits the wood's natural structure of the micron-wide channels that carry water and nutrients up the tree.

The researchers supplement these natural channels by drilling a second array of millimeter-wide channels through a thin cross-section of the wood, says Yudi Kuang, a visiting scholar and lead author on the paper. The investigators then briefly expose the top surface to high heat, which carbonizes the surface for greater solar absorption.

In operation, as the device absorbs solar energy, it draws up salty water through the wood's natural micron-wide channels. Salt is spontaneously exchanged from these tiny channels through natural openings along their sides to the vastly wider drilled channels, and then easily dissolves back into the water below.

"In the lab, we have successfully demonstrated excellent anti-fouling in a wide range of salt concentrations, with stable steam generation with about 75% efficiency," says Kuang.

"Using natural wood as the only starting material, the salt-rejecting solar evaporator is expected to be low-cost," adds research associate Chaoji Chen. The evaporator approach also is effective in other types of wood with similar natural channels. The researchers now are optimizing their system for higher efficiency, lower capital cost, and integration with a steam condenser to complete the desalination cycle.

Hu's lab also recently developed another solar-heated prototype device that takes advantage of carbonized wood's ability to absorb and distribute solar energy - this one created to help clean up spills of hard-to-collect heavy oils.

"Our carbonized wood material demonstrates rapid and efficient crude oil absorption, as well as low cost and scalable manufacturing potential," says Kuang, lead author on a paper about the research in Advanced Functional Materials.

"Wood is an intriguing material scaffold, with its unique hierarchically porous structure, and it is a renewable, abundant and cost-effective resource," Hu says. "In our lab, the fundamental understanding of biomaterials (especially wood) leads us to achieve extraordinary performance that is competitive with widely used but non-sustainable materials."

Among other projects, his lab has created light and effective "nanowood" insulating materials. It also has engineered "super wood" that is 12 times stronger and 10 times tougher than natural wood, and potentially may replace steel, titanium or carbon fiber in certain applications, he says.

Research paper


Related Links
University of Maryland
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Stability improvement under high efficiency - next stage development of perovskite solar cells
Beijing, China (SPX) Apr 16, 2019
With efficiency of perovskite solar cells (PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites, including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

Tests for the InSight 'Mole'

SOLAR DAILY
Israeli spacecraft crashes during moon landing: mission control

To get to the Moon in 2024, the rocket is just NASA's first headache

ESA boosts startup to the Moon

SpaceIL lunar lander in orbit around moon ahead of touchdown

SOLAR DAILY
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt

SOLAR DAILY
Life Could Be Evolving Right Now on Nearest Exoplanets

NASA researchers catalogue all microbes and fungi on ISS

Biologists find world's first organism with non-photosynthesizing chlorophyll

Building blocks of DNA and RNA could have appeared together before life began on Earth

SOLAR DAILY
Arianespace completes deployment of O3b constellation

Composite Overwrap 3D-Printed Rocket Thruster Endures Extreme Heat

SpaceX carries out first commercial launch of Falcon Heavy

SpaceX scrubs 1st commercial Falcon Heavy launch due to strong wind

SOLAR DAILY
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

SOLAR DAILY
Iron volcanoes may have erupted on metal asteroids

Hubble watches spun-up asteroid coming apart

Self-driving spacecraft set for planetary defence expedition

Stunning discovery offers glimpse of minutes following 'dinosaur-killer' Chicxulub impact









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.