Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
Solar cells made from black silicon
by Staff Writers
Berlin, Germany (SPX) Oct 10, 2012


illustration only

Solar cells convert three-quarters of the energy contained in the Sun's spectrum into electricity - yet the infrared spectrum is entirely lost in standard solar cells. In contrast, black silicon solar cells are specifi cally designed to absorb this part of the Sun's spectrum - and researchers have recently succeeded in doubling their overall efficiency.

The Sun blazes down from a deep blue sky - and rooftop solar cells convert this solar energy into electricity. Not all of it, however: Around a quarter of the Sun's spectrum is made up of infrared radiation which cannot be converted by standard solar cells - so this heat radiation is lost. One way to overcome this is to use black silicon, a material that absorbs nearly all of the sunlight that hits it, including infrared radiation, and converts it into electricity. But how is this material produced?

"Black silicon is produced by irradiating standard silicon with femtosecond laser pulses under a sulfur containing atmosphere," explains Dr. Stefan Kontermann, who heads the Research group "Nanomaterials for Energy Conversion" within the Fraunhofer Project Group for Fiber Optical Sensor Systems at the Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, HHI.

"This structures the surface and integrates sulfur atoms into the silicon lattice, making the treated material appear black." If manufacturers were to equip their solar cells with this black silicon, it would significantly boost the cells' efficiency by enabling them to utilize the full Sun spectrum.

Researchers at HHI have now managed to double the efficiency of black silicon solar cells - in other words, they have created cells that can produce more electricity from the infrared spectrum. "We achieved that by modifying the shape of the laser pulse we use to irradiate the silicon," says Kontermann.

This enabled the scientists to solve a key problem of black silicon: In normal silicon, infrared light does not have enough energy to excite the electrons into the conduction band and convert them into electricity, but the sulfur incorporated in black silicon forms a kind of intermediate level. You can compare this to climbing a wall: The first time you fail because the wall is too high, but the second time you succeed in two steps by using an intermediate level.

However, in sulfur this intermediate level not only enables electrons to climb the 'wall', it also works in reverse, enabling electrons from the conduction band to jump back via this intermediate level, which causes electricity to be lost once again.

By modifying the laser pulse that drives the sulfur atoms into the atomic lattice, researchers can change the positions that these atoms adopt in the lattice and change the height of their 'levels', in other words their energy level. "We used the laser pulses to alter the embedded sulfur in order to maximize the number of electrons that can climb up while minimizing the number that can go back down," Kontermann sums up.

Prize-winning project
In the first stage of the project, the scientists modified the laser pulses and investigated how this changed the properties of black silicon and the efficiency of solar cells made from this material. Now they are working on using different shapes of laser pulses and analyzing how this changes the energy level of the sulfur.

In the future, they hope that a system of algorithms will automatically identify how the laser pulse should be modified in order to achieve optimum efficiency. The 'Customized light pulses' project was one of this year's winners in the '365 Places in the Land of Ideas' competition; the awards ceremony is due to be held in Goslar on October 11, 2012.

The researchers have already successfully built prototypes of black silicon solar cells and their next step will be to try and merge these cells with commercial technology. "We hope to be able to increase the efficiency of commercial solar cells - which currently stands at approximately 17 percent - by one percent by combining them with black silicon," Kontermann says. Their starting point is a standard commercial solar cell: The experts simply remove the back cover and incorporate black silicon in part of the cell, thereby creating a tandem solar cell that contains both normal and black silicon.

The researchers are also planning a spin-off: This will be used to market the laser system that manufacturers will be able to acquire to expand their existing solar cell production lines. Manufacturers would then be able to produce the black silicon themselves and include it in the cells as standard.

Research News October 2012 [ PDF 0,38 MB ]

.


Related Links
Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute HHI
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
PSEG Queen Creek Solar Farm in Arizona Begins Commercial Operation
Newark NJ (SPX) Oct 10, 2012
PSEG Solar Source has announced the commercial operation of the 25.2 megawatt DC (19 megawatt AC) Queen Creek Solar Farm in Queen Creek, Arizona. Salt River Project (SRP) has a 20-year agreement to acquire all of the solar energy generated by the project and has begun accepting power from the plant. The solar plant, located on148 acres of land approximately 30 miles southeast of Phoenix, c ... read more


SOLAR DAILY
SpaceX capsule links up with space station: NASA

Assembled and poised for launch: Soyuz is ready with its two Galileo navigation satellites

SpaceX On Course For Crew Resupply Cargo Delivery To Space Station

SpaceX craft on way to ISS in first supply run

SOLAR DAILY
First Scoopful A Success

Checking a Bright Object on the Ground

China to collect samples from Mars by 2030: Xinhua

Mars rover finds 'bright object'

SOLAR DAILY
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

SOLAR DAILY
Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

SOLAR DAILY
Candels Team Discovers Dusty Galaxies At Ancient Epoch With Hubble Space Telescope

Large water reservoirs at the dawn of stellar birth

Comet crystals found in a nearby planetary system

The Magnetic Wakes of Pulsar Planets

SOLAR DAILY
ATK Awarded $50 Million Contract for NASA's Advanced Concept Booster Development for SLS

Rotors seen as method of spacecraft return

ATK and NASA Showcase Cost-Saving Upgrades for Space Launch System Solid Rocket Boosters

Australian hypersonic test a success

SOLAR DAILY
ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

SOLAR DAILY
Asteroid fragments could hint at the origin of the solar system

A New Dawn For NASA's Asteroid Explorer

Troughs Suggest Stunted Planetary Development Of Vesta

Mysterious Case of Asteroid Oljato's Magnetic Disturbance




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement