Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
Solar cell compound probed under pressure
by Staff Writers
Washington DC (SPX) Sep 26, 2014


This is a microphotograph of "wurzite" GaAs nanowire in a diamond anvil cell high pressure cavity kept at 99,000 times normal atmospheric pressure (10 gigapascals); a blue spot is from the 488 nm laser spot (about 4 um in diameter). Image courtesy Wei Zhou.

Gallium arsenide, GaAs, a semiconductor composed of gallium and arsenic is well known to have physical properties that promise practical applications. In the form of nanowires and nanoparticles, it has particular potential for use in the manufacture of solar cells and optoelectronics in many of the same applications that silicon is commonly used.

But the natural semiconducting ability of GaAs requires some tuning in order to make it more desirable for use in manufacturing these types of products. New work from a team led by Carnegie's Alexander Goncharov explores a novel approach to such tuning. Their work is published in Scientific Reports.

The research team includes Wei Zhou, Xiao-Jia Chen, Xin-Hua Li and Yu-Qi Wang of the Chinese Academy of Sciences and Jian-Bo Zhang of South China University of Technology.

Metallic substances conduct electrical current easily, whereas insulating (non-metallic) materials conduct no current at all. Semiconducting materials exhibit mid-range electrical conductivity. When semiconducting materials are subjected to an input of a specific energy, bound electrons can be moved to higher-energy, conducting states.

The specific energy required to make this jump to the conducting state is defined as the "band gap." Fine-tuning of this band gap has the potential to improve gallium arsenide's commercial potential.

There are different methods available to engineer slight tweaks to the "band gap." Goncharov's team focused on the novel application of very high pressure, which can cause a compound to undergo electronic changes that can alter the electron-carrier properties of materials. It had already been demonstrated on nanowires made from one crystalline form of gallium arsenide--the cubic so-called "zincblende" structure--that the "band gap" widens under pressure.

The present research focused instead on nanowires of a less-common crystalline form--the hexagonal so-called "wurtzite" structure.

The team subjected "wurtzite" gallium arsenide to up to about 227,000 times normal atmospheric pressure (23 gigapascals) in diamond anvil cells. They discovered the "band gap" that the electrons need to leap across to also widened, although not as much as in the case of the "zincblende" crystal nanowires.

Significantly, they discovered that around 207,000 times normal atmospheric pressure (21 gigapascals), the "wurtzite" gallium arsenide nanowires underwent a structural change that induced a new phase, the so-called "orthorhombic" one, which may possibly have metallic electronic properties.

"The similarity in behavior when subjected to high pressure, but resulting in significant differences in the size of the 'band gap', between the two crystalline structures of gallium arsenide suggests that both types of GaAs structures could theoretically be incorporated into a single device, or even a single nanowire, and realize much more complex and useful electronic functions through interactions across the phases," Goncharov said.

"We believe these findings will stimulate further research into gallium arsenide for both basic scientific and practical purposes."

.


Related Links
Carnegie Institution
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Solar-powered family car Stella rides California coast
San Francisco (AFP) Sept 24, 2014
A solar-powered family car completed its drive from Los Angeles to San Francisco fueled by good vibes and pure California sunshine. And after turning the heads of gobsmacked onlookers during its journey up California's scenic Pacific Coast Highway, the creators of "Stella" are dreaming of a day when their futuristic vehicle is a commonplace sight. The lightweight, wedge-shaped automobile ... read more


SOLAR DAILY
France raises heat on decision for next Ariane rocket

SpaceX is not only taking a 3D printer to space, but mice too

United Launch Alliance Launches Its 60th Mission from Cape Canaveral

Lockheed Martin-built CLIO Satellite Launched From Cape Canaveral

SOLAR DAILY
Two Martian Probes Set to Orbit Red Planet

NASA's MAVEN spacecraft enters Mars orbit

India to enter Mars orbit on September 24

NASA Mars Spacecraft Ready for Sept. 21 Orbit Insertion

SOLAR DAILY
Lunar explorers will walk at higher speeds than thought

Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

SOLAR DAILY
Miranda: An Icy Moon Deformed by Tidal Heating

Awaiting New Results on Pluto's Atmosphere

New Horizons Crosses Neptune Orbit On Route To First Pluto Flyby

From Pinpoint of Light to a Geologic World

SOLAR DAILY
Chandra Finds Planet That Makes Star Act Deceptively Old

Solar System Simulation Reveals Planetary Mystery

'Hot Jupiters' provoke their own host suns to wobble

First evidence for water ice clouds found outside solar system

SOLAR DAILY
Amazon founder strikes deal to build US rocket engines

Boeing, SpaceX to send astronauts to space station

Space Launch System Will Use Massive Welding Tool

Europe readies 'space plane' for sub-orbital test flight

SOLAR DAILY
Astronauts eye China's future space station

China eyes working with other nations as station plans develop

China completes construction of advanced space launch facility

China to launch second space lab in 2016: official

SOLAR DAILY
Dawn Operating Normally After Safe Mode Triggered

'J' marks the spot for Rosetta's lander

'J' marks the spot for historic comet landing

A Map of Rosetta's Comet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.