Space Travel News  
ROBO SPACE
Snake-inspired robot uses kirigami to move
by Staff Writers
Boston MA (SPX) Feb 28, 2018

illustration only

Who needs legs? With their sleek bodies, snakes can slither up to 14 miles-per-hour, squeeze into tight space, scale trees and swim. How do they do it? It's all in the scales. As a snake moves, its scales grip the ground and propel the body forward - similar to how crampons help hikers establish footholds in slippery ice. This so-called friction-assisted locomotion is possible because of the shape and positioning of snake scales.

Now, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has developed a soft robot that uses those same principles of locomotion to crawl without any rigid components. The soft robotic scales are made using kirigami - an ancient Japanese paper craft that relies on cuts, rather than origami folds, to change the properties of a material. As the robot stretches, the flat kirigami surface is transformed into a 3D-textured surface, which grips the ground just like snakeskin.

The research is published in Science Robotics.

"There has been a lot of research in recent years into how to fabricate these kinds of morphable, stretchable structures," said Ahmad Rafsanjani, a postdoctoral fellow at SEAS and first author of the paper. "We have shown that kirigami principles can be integrated into soft robots to achieve locomotion in a way that is simpler, faster and cheaper than most previous techniques."

The researchers started with a simple, flat plastic sheet. Using a laser cutter, they embedded an array of centimeter-scale cuts, experimenting with different shapes and sizes. Once cut, the researchers wrapped the sheet around a tube-like elastomer actuator, which expands and contracts with air like a balloon.

When the actuator expands, the kirigami cuts pop-out, forming a rough surface that grips the ground. When the actuator deflates, the cuts fold flat, propelling the crawler forward.

The researchers built a fully untethered robot, with its integrated onboard control, sensing, actuation and power supply packed into a tiny tail. They tested it crawling throughout Harvard's campus.

The team experimented with various-shaped cuts, including triangular, circular and trapezoidal. They found that trapezoidal cuts - which most closely resemble the shape of snake scales -gave the robot a longer stride.

"We show that the locomotive properties of these kirigami-skins can be harnessed by properly balancing the cut geometry and the actuation protocol," said Rafsanjani. "Moving forward, these components can be further optimized to improve the response of the system."

"We believe that our kirigami-based strategy opens avenues for the design of a new class of soft crawlers," said Katia Bertoldi, the William and Ami Kuan Danoff Professor of Applied Mechanics and senior author of the paper. "These all-terrain soft robots could one day travel across difficult environments for exploration, inspection, monitoring and search and rescue missions or perform complex, laparoscopic medical procedures."


Related Links
Harvard School of Engineering and Applied Sciences
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Robotic crystals that walk n' roll
Tokyo, Japan (SPX) Feb 28, 2018
Scientists at Waseda University may have come a step closer to innovating soft robots to care for people. Its material, however, is something you may have never expected. They have developed robotic crystals that walk slowly like an inchworm and roll 20,000 times faster than its walking speed. These autonomously moving, organic crystals have great potential as material for soft robots in the future, especially in the medical field. "The crystals are flexible, durable and lightweight," says H ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
ROBO SPACE
Life in world's driest desert seen as sign of potential life on Mars

Mars Odyssey Observes Martian Moons

Atacama Desert study offers glimpse of what life on Mars could look like

Dormant desert life hints at possibilities on Mars

ROBO SPACE
On second thought, the Moon's water may be widespread and immobile

SwRI scientist helps characterize water on lunar surface

How does water change the moon's origin story?

The moon formed inside a vaporized Earth synestia

ROBO SPACE
Chasing a stellar flash with assistance from GAIA

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

ROBO SPACE
Alien life in our Solar System? Study hints at Saturn's moon

Model based on hydrothermal sources evaluate possibility of life Jupiter's icy moon

When do aging brown dwarfs sweep the clouds away?

Proxima Centauri's no good, very bad day

ROBO SPACE
Russia's Energomash tests RD-180 engine made for US Atlas rocket

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

SLS Intertank loaded for shipment, structural testing

Space-X lobs Spanish military satellite into orbit

ROBO SPACE
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

ROBO SPACE
Five Years after the Chelyabinsk Meteor: NASA Leads Efforts in Planetary Defense

Seafloor data point to global volcanism after Chicxulub meteor strike

Evidence for a massive biomass burning event at the Younger Dryas Boundary

Two Small Asteroids Safely Pass Earth This Week









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.