Space Travel News  
INTERNET SPACE
Smartwatches can now track your finger in mid-air using sonar
by Staff Writers
Seattle WA (SPX) Mar 22, 2016


University of Washington computer science and engineering and electrical engineering researchers demonstrate FingerIO, a new technology from CSE's Networks and Mobile Systems Lab that employs sonar to enable users to interact with their smartphones and smartwatches by gesturing or writing on any nearby surface. Image courtesy University of Washington Department of Computer Science and Engineering. Watch a video on the research here.

As mobile and wearable devices such as smartwatches grow smaller, it gets tougher for people to interact with screens the size of a matchbook. That could change with a new sonar technology developed by University of Washington computer scientists and electrical engineers that allows you to interact with mobile devices by writing or gesturing on any nearby surface - a tabletop, a sheet of paper or even in mid-air.

FingerIO tracks fine-grained finger movements by turning a smartphone or smartwatch into an active sonar system using the device's own microphones and speakers.

Because sound waves travel through fabric and do not require a line of sight, users can even interact with a phone inside a front pocket or a smartwatch hidden under a sweater sleeve.

In a paper to be presented in May at the Association for Computing Machinery's CHI 2016 conference in San Jose, California, the UW team demonstrates that FingerIO can accurately track two-dimensional finger movements to within 8mm, which is sufficiently accurate to interact with today's mobile devices. The work was recognized with an honorable mention award by the conference.

"You can't type very easily onto a smartwatch display, so we wanted to transform a desk or any area around a device into an input surface," said lead author Rajalakshmi Nandakumar, a UW doctoral student in computer science and engineering. "I don't need to instrument my fingers with any other sensors - I just use my finger to write something on a desk or any other surface and the device can track it with high resolution."

Using FingerIO, one could use the flick of a finger to turn up the volume, press a button, or scroll through menus on a smartphone without touching it, or even write a search command or text in the air rather than typing on a tiny screen.

FingerIO turns a smartwatch or smartphone into a sonar system using the device's own speaker to emit an inaudible sound wave. That signal bounces off the finger, and those "echoes" are recorded by the device's microphones and used to calculate the finger's location in space.

Using sound waves to track finger motion offers several advantages over cameras - which don't work without line-of-sight when the device is hidden by fabric or another obstructions - and other technologies like radar that require both custom sensor hardware and greater computing power, said senior author and UW assistant professor of computer science and engineering Shyam Gollakota.

"Acoustic signals are great - because sound waves travel much slower than the radio waves used in radar, you don't need as much processing bandwidth so everything is simpler," said Gollakota, who directs the UW's Networks and Mobile Systems Lab. "And from a cost perspective, almost every device has a speaker and microphones so you can achieve this without any special hardware."

But sonar echoes are weak and typically not accurate enough to track finger motion at a high resolution. Errors of a few centimeters make it impossible to differentiate between writing individual letters or subtle hand gestures.

The UW researchers employed a type of signal typically used in wireless communication - called Orthogonal Frequency Division Multiplexing - and demonstrated that it can be used to achieve high-resolution finger tracking using sound. Their algorithms leverage the properties of OFDM signals to track phase changes in the echoes and correct for any errors in the finger location to achieve sub-centimeter finger tracking.

To test their approach, the researchers created a FingerIO prototype app for Android devices and downloaded it to an off-the-shelf Samsung Galaxy S4 smartphone and a smartwatch customized with two microphones, which are needed to track finger motion in two dimensions. Today's smartwatches typically only have one, which can be used to track a finger in one dimension.

The researchers asked testers to draw shapes such as stars, squiggles or figure 8s on a touchpad next to a smartphone or smartwatch running FingerIO. Then they compared the touchpad tracings to the shapes created by FingerIO's tracking.

The average difference between the drawings and the FingerIO tracings was 0.8 centimeters for the smartphone and 1.2 centimeters for the smartwatch.

"Given that your finger is already a centimeter thick, that's sufficient to accurately interact with the devices," said co-author and electrical engineering graduate student Vikram Iyer.

Next steps for the research team include demonstrating how FingerIO can be used to track multiple fingers moving at the same time, and extending its tracking abilities into three dimensions by adding additional microphones to the devices.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Washington
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
World's thinnest lens to revolutionize cameras
Canberra, Australia (SPX) Mar 17, 2016
Scientists have created the world's thinnest lens, one two-thousandth the thickness of a human hair, opening the door to flexible computer displays and a revolution in miniature cameras. Lead researcher Dr Yuerui (Larry) Lu from The Australian National University (ANU) said the discovery hinged on the remarkable potential of the molybdenum disulphide crystal. "This type of material i ... read more


INTERNET SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

INTERNET SPACE
How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

Close comet flyby threw Mars' magnetic field into chaos

INTERNET SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

INTERNET SPACE
Pluto's 'Snakeskin' Terrain: Cradle of the Solar System?

What's Eating at Pluto?

Methane Snow on Pluto's Peaks

Versatile Instrument to Scout for Kuiper Belt Objects

INTERNET SPACE
NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

Sharpest view ever of dusty disc around aging star

INTERNET SPACE
Robert Goddard's Rocket and the Launch of Spaceflight

Engine Test Marks Major Milestone on NASA's Journey to Mars

NASA Prepares to Fly - First RS-25 Flight Engine Test Set for March

US to Buy Eight Russian RD-181 Rocket Engines

INTERNET SPACE
China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

INTERNET SPACE
As Cold as Ice and as Old as the Sun: Cool Findings on Comet Churi

Comet's age revealed by the type of ice it carries

NASA's OSIRIS-REx spacecraft in thermal vacuum testing

Dawn's First Year at Ceres: A Mountain Emerges









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.