Space Travel News  
SOLAR DAILY
Slow 'hot electrons' could improve solar cell efficiency
by Staff Writers
Groningen, Netherlands (SPX) Jan 17, 2018


This is a laser light exciting the hybrid perovskite material

Photons with energy higher than the 'band gap' of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat so it does not contribute to the voltage.

University of Groningen Professor of Photophysics and Optoelectronics Maria Antonietta Loi has now found a material in which these hot electrons retain their high energy levels for much longer. This might make it possible to use more of their energy to obtain a higher voltage. Her results were published on 16 January in Nature Communications.

The efficiency of solar panels is hampered by a Goldilocks problem: photons need to have just the right amount of energy to be converted into free electrons, which contribute to the voltage. Too little energy, and the photons pass right through the solar panel. Too much, and the excess energy disappears as heat.

The latter is due to the creation of hot (high-energy) electrons. Before they can be extracted from the solar cells, these hot electrons first give off their excess energy by causing vibrations in the crystalline material of the solar panel. 'This energy loss puts a limit to the maximum efficiency of solar cells', explains Loi.

She is working on a special type of solar cell that is made of organic-inorganic hybrid perovskites. Perovskites are named after a mineral that has the chemical formula ABX3. In the X position, anions form an octahedron, while in the A position cations form a cube around them, while a central cation takes the B position. Many materials in the perovskite family adopt this crystal structure. Hybrid perovskites contain organic cations in the A position.

Lifespan
Most hybrid-perovskite solar cells contain lead, which is toxic. Loi's group recently published a paper describing a record-breaking nine-percent efficiency in a hybrid-perovskite solar cell containing harmless tin instead of lead. 'When we studied this material further, we observed something strange', she continues. The results could only mean that the hot electrons produced in the tin-based solar cells took about a thousand times longer than usual to dissipate their excess energy.

'The hot electrons gave off their energy after several nanoseconds instead of some hundred femtoseconds. Finding such long-lived hot electrons is what everybody in this field is hoping for', says Loi.

Their longer lifespan makes it possible to harvest these electrons' energy before it turns into heat. 'This means we could harvest electrons with a higher energy and thus create a higher voltage in the solar cell.' Theoretical calculations show that by harvesting the hot electrons, the maximum efficiency for hybrid-perovskite solar cells could increase from 33 to 66 percent.

Clean energy
The next step is to find out why the tin-based hybrid perovskite slows down the decay of hot electrons. Then new perovskite materials could be designed with even slower hot electrons. 'These tin-based perovskites could be a game changer, and could ultimately make a big contribution to providing clean and sustainable energy in the future.'

Hong-Hua Fang, Sampson Adjokatse, Shuyan Shao, Jacky Even and Maria Antonietta Loi: Long-lived Hot-carrier Light Emission and Large Blue Shift in Formamidinium Tin Triiodide Perovskites Nature Communications 16 January 2018

SOLAR DAILY
Multi-model effort highlights progress, future needs in renewable energy modeling
Golden CO (SPX) Jan 10, 2018
Models of the U.S. electricity sector are relied upon by sector stakeholders and decision makers, but the recent surge in variable renewable energy (VRE), such as wind and solar, led a team of modeling experts to examine how these models would represent scenarios with high penetrations of VRE. Four agencies, including the U.S. Department of Energy's National Renewable Energy Laboratory (NR ... read more

Related Links
University of Groningen
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Exploring alien worlds with lasers

Opportunity Takes Images Over the Holiday Period

Our rover could discover life on Mars - here's what it would take to prove it

Opportunity takes extensive imagery to decide where to go next

SOLAR DAILY
Astronauts: Trump's proposed Lunar mission will take time

China Prepares for Breakthrough Chang'e 4 Moon Landing in 2018

China solicits messages to be sent to moon

Thales Alenia Space signs 3 contracts for NASA's deep space exploration

SOLAR DAILY
New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

SOLAR DAILY
Iron-Rich Stars Host Shorter-Period Planets

SETI project homes in on strange 'fast radio bursts'

Extraterrestrial Hypatia stone rattles solar system status quo

Planets around other stars are like peas in a pod

SOLAR DAILY
Arianespace begins building final 10 Ariane 5s ahead of Ariane 6 operational debut

SpaceX says rocket worked fine as spy satellite reported lost

Arianespace prepares for a busy 2018

Dragon space truck set for departure from Space Station

SOLAR DAILY
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

SOLAR DAILY
NASA image showcases Ceres mountain named for Kwanzaa

Development on muon beam analysis of organic matter in samples from space

Arecibo radar returns with asteroid Phaethon images

Alien object Oumuama is a natural body transiting our solar system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.