Space Travel News  
STELLAR CHEMISTRY
Shining Starlight On The Dark Cocoons Of Star Birth

This series of images from NASA's Spitzer Space Telescope shows a dark mass of gas and dust, called a core, where new stars and planets will likely spring up. The image on the far right shows the core as seen at longer wavelengths of infrared light (8 microns); when viewed at this wavelength, the core appears dark. The middle image shows the core as seen at a shorter infrared wavelength (3.6 microns).

In this view, the core lights up because it is deflecting starlight from nearby stars. This unexpected light, called coreshine, tells astronomers that the dust making up the core must be bigger than previously thought - smaller particles would not have been big enough to scatter the light. The image on the left is a combination of the other two images.

This particular core lies deep within a larger dark cloud called L183. Spitzer's infrared vision allows it to peer into the dark cloud to see the even darker cores buried inside. The observations were made with Spitzer's infrared array camera. Image credit: NASA/JPL-Caltech/Observatoire de Paris/CNRS
by Staff Writers
Washington DC (SPX) Sep 24, 2010
Astronomers have discovered a new, cosmic phenomenon, termed "coreshine," which is revealing new information about how stars and planets come to be.

The scientists used data from NASA's Spitzer Space Telescope to measure infrared light deflecting off cores - cold, dark cocoons where young stars and planetary systems are blossoming. This coreshine effect, which occurs when starlight from nearby stars bounces off the cores, reveals information about their age and consistency.

In a new paper in the journal Science, the team reports finding coreshine across dozens of dark cores.

"Dark clouds in our Milky Way galaxy, far from Earth, are huge places where new stars are born. But they are shy and hide themselves in a shroud of dust so that we cannot see what happens inside," said Laurent Pagani of the Observatoire de Paris and the Centre National de la Recherche Scientifique, both in France.

"We have found a new way to peer into them. They are like ghosts because we see them but we also see through them."

Pagani and his team first observed one case of the coreshine phenomenon in 2009. They were surprised to see that starlight was scattering off a dark core in the form of infrared light that Spitzer could see. They had thought the grains of dust making up the core were too small to deflect the starlight; instead, they expected the sunlight would travel straight through.

Their finding told them that the dust grains were bigger than previously thought - about 1 micron instead of 0.1 micron (a typical human hair is about 100 microns).

That might not sound like a big difference, but it can significantly change astronomers' models of star and planet formation. For one thing, the larger grain size means that planets - which form as dust circling young stars sticks together - might take shape more quickly. In other words, the tiny seeds for planet formation may be forming very early on, when a star is still in its pre-embryonic phase.

But this particular object observed in 2009 could have been a fluke. The researchers did not know if what they found was true of other dark clouds - until now. In the new study, they examine 110 dark cores, and find that about half of them exhibit coreshine.

The finding amounts to a new tool for not only studying the dust making up the dark cores, but also for assessing their age. The more developed star-forming cores will have larger dust grains, so, using this tool, astronomers can better map their ages across our Milky Way galaxy.

Coreshine can also help in constructing three-dimensional models of the cores - the deflected starlight is scattered in a way that is dependent on the cloud structures.

Said Pagani, "We're opening a new window on the realm of dark, star-forming cores."

Other authors are Aurore Bacmann of the Astrophysics Laboratory of Grenoble, France, and Jurgen Steinacker, Amelia Stutz and Thomas Henning of the Max-Planck Institute for Astronomy, Germany. Steinacker is also with the Observatoire de Paris, and Stutz is also with the University of Arizona, Tucson.

The Spitzer measurements are based on data from the mission's public archive, taken before the telescope ran out of its liquid coolant in May 2009 and began its current warm mission.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Spitzer
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


STELLAR CHEMISTRY
Breaking Waves In The Stellar Lagoon
Boston MA (SPX) Sep 23, 2010
A spectacular new NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation f ... read more







STELLAR CHEMISTRY
Vandenberg launches Minotaur IV

LockMart And ATK Athena Launch Vehicles Selected As A NASA Launch Services Provider

Sirius XM-5 Satellite Delivered To Baikonur For October Launch

Emerging Technologies May Fuel Revolutionary Launcher

STELLAR CHEMISTRY
Martian Moon Phobos May Have Formed by Catastrophic Blast

First Results From Herschel Mars Observations

Peculiar Phenomena During Northern Spring On Mars

Opportunity Approaching Possible Meteorite

STELLAR CHEMISTRY
Magnetic Anomalies Shield The Moon

Watch Out For The Super Harvest Moon

Water on Moon is bad news for China's lunar telescope

New Insights Into The Moon's Rich Geologic Complexity

STELLAR CHEMISTRY
The Longest Space Mission

Uranus may have been cosmic 'pinball'

Flying To The Edge

Picture-Perfect Pluto Practice

STELLAR CHEMISTRY
This Planet Smells Funny

Scientists looking to spot alien oceans

Deadly Tides Mean Early Exit For Hot Jupiters

Can We Spot Volcanoes On Alien Worlds

STELLAR CHEMISTRY
U.K. predicts 'spaceplane' in 10 years

Successful Static Testing Of L 110 Liquid Core Stage Of GSLV 3

Danish rocketeers abort launch attempt

Technical glitch grounds homemade Danish rocket

STELLAR CHEMISTRY
China Ready For Another Lunar Encounter

China keeps up busy space launch schedule

Space-Age Device To Deliver More Efficient Health Care On Earth And Above

China Launches New Satellite

STELLAR CHEMISTRY
Rosetta Should Look South For Safe Landing Site

Scientists find 'rubble pile' asteroids

Avoiding An Asteroid Collision

Amateur Astronomers Open Potential Lab In Outer Space For Planetary Scientists


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement