Space Travel News  
SOLAR DAILY
Seeing photovoltaic devices in a new light
by Staff Writers
Osaka, Japan (SPX) Jul 06, 2022

illustration only

Scientists from the Institute for Open and Transdisciplinary Research Initiatives at Osaka University discovered a new feature of solar cells made from antimony sulfiodide:sulfide composite they termed the wavelength-dependent photovoltaic effect (WDPE).

The team determined that changing the color of incident light from visible to ultraviolet induced a reversible change in the output voltage, while leaving the current generated unchanged. This work may lead to new functional light-sensing and imaging devices.

Photovoltaic (PV) devices - such as solar cells and photodiodes - which convert light energy into electronic power are important as renewable energy sources or as light/image sensors. Recent progress in thin film PV devices has attracted much attention owing to their low-cost process, flexibility, and light weight. However, although various PV devices have been reported so far, reversible and fast wavelength-dependent responses have not been previously observed.

To distinguish between irradiation colors using a single photodiode, a liquid crystal filter must be used that can electronically switch the absorption color range. However, these filters are bulky; being able to perform color detection without requiring such filters would be useful for minimizing the size of photovoltaic devices.

Now, a team of researchers at Osaka University have built new photovoltaic devices made from antimony sulfiodide:sulfide composite and found a novel effect. The voltage generated could be changed by switching the light color, in which ultraviolet reduced the output voltage. That is, a reversible change in the current versus voltage curves could be obtained simply by shining different colors of light on the device. "Such a dramatic shift in voltage is not observed in silicon, perovskites, or organic solar cells," explains first author Ryosuke Nishikubo.

To better understand the mechanism behind this effect, the scientists then performed transient photovoltage (TPV) and photo-induced charge extraction by linearly increasing voltage (photo-CELIV). These experiments helped clarify the dramatic and reversible change in charge carrier lifetime induced by ultraviolet irradiation.

The team concluded that WDPE was caused by metastable "trap" states at the heterojunction interface, generated by high energy charges. These interfacial energy traps significantly reduced output voltage, and as a result, light of certain energies could be distinguished based on the voltage.

This change could be enhanced by the presence of the vapor from a polar solvent. "While our work helps advance basic science by explaining this novel effect, the research also has many potential applications, including as a vapor detector," says senior author Akinori Saeki.

The newly discovered phenomenon may be applied to light sensing used in everything from mobile phones to cars, to security or horticultural systems. It can also be a part of imaging applications in medical and other scientific pursuits, such as space satellites and microphotography. In addition, it is also potentially desirable as a renewable energy source, because of its low toxicity and low production cost.

Research Report:Unprecedented wavelength dependence of an antimony chalcohalide photovoltaic device


Related Links
Osaka University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
The structure-performance of bulk-heterojunction organic solar cells
Beijing, China (SPX) Jul 06, 2022
The active layer morphology of organic solar cells (OSCs) serves as the bridge that connects material properties with device performances, and thus the morphology is of critical importance in device fabrication. State-of-the-art power conversion efficiencies (PCEs) of OSCs based on p-type donor polymers and n-type non-fullerene acceptors (NFAs) forming multi-length-scale fibril interpenetrating networks are above 19% (Nature Materials, 2022, DOI:10.1038/s41563-022-01244-y). Such a morphology, composed o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
My Favorite Martian Image: 'Enchanted' Rocks at Jezero Crater

Eyeing Kukenan - Sols 3519-3524

Historic Mars mission completes all preset tasks

Help NASA scientists find clouds on Mars

SOLAR DAILY
Update on CAPSTONE communications issue

Robotics team practises lunar exploration on Mount Etna

CAPSTONE Uses Gravity on Unusual, Efficient Route to the Moon

Rocket Lab launches CAPSTONE on Lunar mission for for NASA

SOLAR DAILY
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

SOLAR DAILY
AI experts called on to join the hunt for exoplanets

Life in the Earth's interior as productive as in some ocean waters

Long-term liquid water also on non-Earth-like planets

Ancient microbes may help us find extraterrestrial life forms

SOLAR DAILY
Virgin Orbit launches 'Straight Up' mission for US Space Force

Relativity and Oneweb sign multi-launch agreement for Terran R

Bacteria for blastoff: Using microbes to make supercharged new rocket fuel

SpaceX launches first C-band television broadcast satellite into space for SES

SOLAR DAILY
Shenzhou XIII astronauts doing well after returning to Earth

Chinese official says its Mars sample mission will beat NASA back to Earth

China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

SOLAR DAILY
Tenoumer Crater, Mauritania

Impact in 2052 ruled out as ESA counts down to Asteroid Day

Bernese researchers simulate defense of the Earth

Exotic carbon microcrystals in meteorite dust









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.