Space Travel News  
Seeing Through The Dark

Part of a filament in the Corona Australis molecular cloud. The image is a composite of J-, H-, and K-band near-infrared observations that were made with the SOFI instrument on ESO's NTT telescope in August 2006. The observations were made to test, how easily the scattered light can be observed and how good it is as a tracer of cloud structure. The J-, H-, and K-band intensities are coded with blue, green, and red colours. The gradual saturation of the near-infrared bands is visible as a change of colour. In diffuse regions the shorter wavelength J-band is strong and the colour is bluish. When the J-band saturates the colour changes first to green and finally, in the centre of the filament, the red colour corresponding to the K-band becomes the strongest. In the most saturated regions the surface brightness data can only be used to derive a lower limit for the total amount of dust on the line of sight.
by Staff Writers
Helsinki, Finland (SPX) Mar 09, 2008
Astronomers have measured the distribution of mass inside a dark filament in a molecular cloud with an amazing level of detail and to great depth. The measurement is based on a new method that looks at the scattered near-infrared light or 'cloudshine' and was made with ESO's New Technology Telescope.

Associated with the forthcoming VISTA telescope, this new technique will allow astronomers to better understand the cradles of newborn stars.

The vast expanses between stars are permeated with giant complexes of cold gas and dust opaque to visible light. Yet these are the future nurseries of stars to be.

"One would like to have a detailed knowledge of the interiors of these dark clouds to better understand where and when new stars will appear," says Mika Juvela, lead author of the paper in which these results are reported.

Because the dust in these clouds blocks the visible light, the distribution of matter within interstellar clouds can be examined only indirectly. One method is based on measurements of the light from stars that are located behind the cloud.

"This method, albeit quite useful, is limited by the fact that the level of details one can obtain depends on the distribution of background stars," says co-author Paolo Padoan.

In 2006, astronomers Padoan, Juvela, and colleague Veli-Matti Pelkonen, proposed that maps of scattered light could be used as another tracer of the cloud's inner structure, a method that should yield more advantages. The idea is to estimate the amount of dust located along the line of sight by measuring the intensity of the scattered light.

Dark clouds are feebly illuminated by nearby stars. This light is scattered by the dust contained in the clouds, an effect dubbed 'cloudshine' by Harvard astronomers Alyssa Goodman and Jonathan Foster. This effect is well known to sky lovers, as they create in visible light wonderful pieces of art called 'reflection nebulae'. The Chameleon I complex nebula is one beautiful example.

When making observations in the near-infrared, art becomes science. Near-infrared radiation can indeed propagate much farther into the cloud than visible light and the maps of scattered light can be used to measure the mass of the material inside the cloud.

To put this method to the test and use it for the first time for a quantitative estimation of the distribution of mass within a cloud, the astronomers who made the original suggestion, together with Kalevi Mattila, made observations in the near-infrared of a filament in the Corona Australis cloud. The observations were made in August 2006 with the SOFI instrument on ESO's New Technology Telescope at La Silla, in the Chilean Atacama Desert. The filament was observed for about 21 hours.

Their observations confirm that the scattering method is providing results that are as reliable as the use of background stars while providing much more detail.

"We can now obtain very high resolution images of dark clouds and so better study their internal structure and dynamics," says Juvela. "Not only is the level of details in the resulting map no longer dependent on the distribution of background stars, but we have also shown that where the density of the cloud becomes too high to be able to see any background stars, the new method can still be applied."

"The presented method and the confirmation of its feasibility will enable a wide range of studies into the interstellar medium and star formation within the Milky Way and even other galaxies," says co-author Mattila.

"This is an important result because, with current and planned near-infrared instruments, large cloud areas can be mapped with high resolution," adds Pelkonen. "For example, the VIRCAM instrument on ESO's soon-to-come VISTA telescope has a field of view hundreds of times larger than SOFI. Using our method, it will prove amazingly powerful for the study of stellar nurseries."

The report appears this week in the journal Astronomy and Astrophysics ("A Corona Australis cloud filament seen in NIR scattered light - I. Comparison with extinction of background stars", by Mika Juvela, Veli-Matti Pelkonen, Paolo Padoan, and Kalevi Mattila). Juvela, Pelkonen and Mattila are associated with the Helsinki University Observatory (Finland), while Padoan is at the University of California, San Diego, USA.

Related Links
European Organisation for Astronomical Research in the Southern Hemisphere
Space Telescope News and Technology at Skynightly.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Large Binocular Telescope Achieves First Binocular Light
Mount Graham AZ (SPX) Mar 07, 2008
The Large Binocular Telescope on Mount Graham, Ariz., has taken celestial images using its twin side-by-side, 8.4-meter (27.6 foot) primary mirrors together, achieving first "binocular" light.







  • Space X Falcon 9 Facing More Delays As Shuttle Replacement Looms
  • SpaceX Completes Qualification Testing Of Falcon 1 Merlin Regeneratively Cooled Engine
  • First Firing Of European Staged-Combustion Demonstration Engine
  • Iran gives details on controversial space launch

  • Sea Launch Prepares For The Launch Of DirecTV 11
  • Europe Launches Jules Verne Robot Space Freighter
  • Russia To Launch US Communications Satellite On March 15
  • ILS To Launch Two SIRIUS Radio Satellite On Proton Breeze M

  • Shuttle Crew Arrives As Endeavour Countdown Gets Under Way
  • Shuttle Endeavour Set For March 11 Launch Of Japanese Station Module
  • Tunnels Of Activity Beneath The Shuttle Launch Pad
  • NASA Issues Draft Report On Environmental Issues To Wind Up Shuttle Program

  • NASA Ponders Future Without Shuttles
  • Twenty years on, Japan's 'Hope' lab to blast into space
  • Space Station Orbit Raised Five Clicks
  • Europe Sets A Course For The ISS

  • Energia Hosts Second Convention For Students Of Space
  • Rockin' All Over the World -- The Top Ten for astronauts
  • Jules Verne ATV Declared Ready For Launch
  • Faster Than A Speeding Bullet: Why We Track The Trash

  • First China Spacewalk On Course For October
  • China To Launch Second Olympic Satellite In May
  • China Kicks Off New Space Launch Center Project
  • Breaking The Silence On Shenzhou

  • iRobot Receives Award For DARPA LANdroids Program
  • Coming soon to Japan: remote control with a wink
  • Japanese cellphones to turn into 'robot' buddies
  • Killer Military Robots Pose Latest Threat To Humanity

  • HiRISE Discovers A Possibly Once-Habitable Ancient Mars Lake
  • Mechdyne Enables Virtual Reality Of Mission To Mars
  • Mars And Venus Are Surprisingly Similar
  • Tenacious Spirit Might See Rover Through Martian Winter

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement