Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Scientists study 'fishy' behavior to solve an animal locomotion mystery
by Staff Writers
Baltimore MD (SPX) Nov 06, 2013


The solution to the animal movement mystery surfaced when the scientists used slow-motion video to study the fin movements of the tiny glass knifefish.

A quirk of nature has long baffled biologists: Why do animals push in directions that don't point toward their goal, like the side-to-side sashaying of a running lizard or cockroach? An engineer building a robot would likely avoid these movements because they seem wasteful. So why do animals behave this way?

A multi-institutional research team, led by Johns Hopkins engineers, says it has solved this puzzle. In an article published in the Nov. 4-8 online edition of Proceedings of the National Academy of Sciences, the team reported that these extra forces are not wasteful after all: They allow animals to increase both stability and maneuverability, a feat that is often described as impossible in engineering textbooks.

"One of the things they teach you in engineering is that you can't have both stability and maneuverability at the same time," said Noah Cowan, a Johns Hopkins associate professor of mechanical engineering who supervised the research. "The Wright Brothers figured this out when they built their early airplanes. They made their planes a little unstable to get the maneuverability they needed."

When an animal or vehicle is stable, it resists changes in direction. On the other hand, if it is maneuverable, it has the ability to quickly change course. Generally, engineers assume that a system can rely on one property or the other -- but not both. Yet some animals seem to produce an exception to the rule.

"Animals are a lot more clever with their mechanics than we often realize," Cowan said. "By using just a little extra energy to control the opposing forces they create during those small shifts in direction, animals seem to increase both stability and maneuverability when they swim, run or fly."

Cowan said this discovery could help engineers simplify and enhance the designs and control systems for small robots that fly, swim or move on mechanical legs.

The solution to the animal movement mystery surfaced when the scientists used slow-motion video to study the fin movements of the tiny glass knifefish. These shy fish, each about 3 inches long, prefer to hide in tubes and other shelters, a behavior that helps them avoid being eaten by predators in the Amazon basin, their natural habitat. In a lab, the team filmed the fish at 100 frames per second to study how they used their fins to hover in these tubes, even when there was a steady flow of water in the fish tank.

"What is immediately obvious in the slow-motion videos is that the fish constantly move their fins to produce opposing forces. One region of their fin pushes water forward, while the other region pushes the water backward," said Eric Fortune, a professor of biological sciences at the New Jersey Institute of Technology who was a co-author of the PNAS paper. "This arrangement is rather counter-intuitive, like two propellers fighting against each other."

The research team developed a mathematical model that suggested that this odd arrangement enables the animal to improve both stability and maneuverability. The team then tested the accuracy of its model on a robot that mimicked the fish's fin movements. This biomimetic robot was developed in the lab of Malcolm MacIver, an associate professor of mechanical and biomedical engineering at Northwestern University and a co-author of the PNAS paper.

"We are far from duplicating the agility of animals with our most advanced robots," MacIver said. "One exciting implication of this work is that we might be held back in making more agile machines by our assumption that it's wasteful or useless to have forces in directions other than the one we are trying to move in. It turns out to be key to improved agility and stability."

The mutually opposing forces that help the knifefish become both stable and maneuverable can also be found in the hovering behavior of hummingbirds and bees, in addition to the glass knifefish examined in this study, said senior author Cowan, who directs the Locomotion in Mechanical and Biological Systems Lab within Johns Hopkins' Whiting School of Engineering.

"As an engineer, I think about animals as incredible, living robots," said study's lead author, Shahin Sefati, a doctoral student advised by Cowan. "It has taken several years of exciting multidisciplinary research during my PhD studies to understand these 'robots' better."

Other co-authors on the paper were Izaak D. Neveln and James B. Snyder, both Northwestern doctoral students in the Neuroscience and Robotics Laboratory supervised by MacIver; Eatai Roth, a former Johns Hopkins doctoral student now at the University of Washington; and Terence Mitchell; a former Johns Hopkins postdoctoral fellow now at the Campbell University School of Osteopathic Medicine.

.


Related Links
Johns Hopkins University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Chinese officials set 1,000 cats loose in forest: reports
Beijing (AFP) Nov 04, 2013
Animal activists are combing a forest in eastern China for more than 1,000 kittens rescued from a meat supplier only to be let loose by local authorities, an organiser said Monday. Animal protection volunteers and local police intercepted a truck "filled with cats" destined for dinner plates last week, said an activist surnamed Ni from the Wuxi Small Animal Protection Association in eastern ... read more


FLORA AND FAUNA
Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ILS Proton Launches Sirius FM-6 Satellite

FLORA AND FAUNA
India reaches for Mars on prestige space mission

India mission to Mars blasts off successfully

Mars Mission: India's Tryst with the Red Planet

Martian box of delights

FLORA AND FAUNA
Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

FLORA AND FAUNA
The Sounds of New Horizons

On the Path to Pluto, 5 AU and Closing

SwRI study finds that Pluto satellites' orbital ballet may hint of long-ago collisions

Archival Hubble Images Reveal Neptune's "Lost" Inner Moon

FLORA AND FAUNA
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

FLORA AND FAUNA
NASA and Sweden to test High Performance Green Propulsion technology

Russia Mulls Development of New Super-Heavy Carrier Rocket

Long March-3, Chang'e probes vital to space program

Dream Chaser Free-Flight Test Report

FLORA AND FAUNA
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

FLORA AND FAUNA
Dawn Enjoying Smooth Travels Deep In The Main Asteroid Belt

Space cannon ready: Japan to shoot asteroid for samples in 2014 mission

Another hazardous asteroid to dart close to Earth in 2065

Is the 'Christmas Comet' cracking up?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement