Space Travel News
SOLAR DAILY
Scientists propose parallel planar heterojunction strategy for efficient solar cells
Scientists Propose Parallel Planar Heterojunction Strategy for Efficient Solar Cells
Scientists propose parallel planar heterojunction strategy for efficient solar cells
by Simon Mansfield
Sydney, Australia (SPX) Nov 13, 2023

Recently, a team led by Prof. WANG Mingtai from the Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS) has put forward an intriguing approach to enhance the efficiency of solar cells. Their focus on the potential antimony trisulfide (Sb2S3) as a photovoltaic absorber has led to a Parallel Planar Heterojunction (PPHJ) strategy for the preparation of highly efficient solar cells.

One of the current challenges in the terrestrial utility of photovoltaic electricity is the absence of low-cost, efficient, and stable materials as well as the related photovoltaic devices for converting photons to electrons. Typically, two independent planar heterojunction (PHJ) subcells are stacked in tandem to create efficient solar cells. However, the need for an interfacial layer for the recombination of opposite charges from the top and bottom subcells increases complexity to material selection and device preparation.

"This is why we introduced the PPHJ strategy in our research." Prof. CHEN Chong explains, "it enables us to tap into the practical potential of creating efficient multiple PHJ solar cells."

The Sb2S3-based PPHJ device consists of two types of conventional PHJ subcells connected in parallel. Researchers explained the divided tasks. The Sb2S3-based PHJ subcells are responsible for absorption and charge generation, while the CH3NH3PbI3-based PHJ subcells govern the electron transport towards collection electrode. Despite the two types of subcells, the PPHJ device remains an Sb2S3 device in nature.

The outcome is a remarkable increase in the efficiency of solution-processed Sb2S3 solar cells, achieving an impressive 8.32% efficiency, the highest among all Sb2S3 devices.

"Indeed, our strategy simplifies the preparation process by allowing for the conventional sequential depositions of multiple PHJ layers," said CHEN, "It eliminates the typical complexity associated with both tandem and parallel tandem PHJ systems."

"This study paves the way for the conceptual design of low-cost and efficient partially or fully inorganic solar cells, thus promoting their development," added CHEN.

Their findings have been published in Angewandte Chemie International Edition.

Research Report:Parallel Planar Heterojunction Strategy Enables Sb2S3 Solar Cells with Efficiency Exceeding 8%

Related Links
Hefei Institutes of Physical Science
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Pioneering Research Enhances PbSe Quantum Dots for Solar Spectrum Harvesting
Sydney, Australia (SPX) Nov 12, 2023
In the ever-evolving landscape of photovoltaic technology, a significant advancement has emerged from the collaborative efforts of researchers at Wuhan Institute of Technology (WIT) and Huazhong University of Science and Technology (HUST) in China. Dr. Jungang He of WIT and Prof. Kanghua Li of HUST have made a groundbreaking contribution to the field of quantum dot photovoltaics, focusing on the enhancement of electron transport layers (ETLs) through F-passivated ZnO. At the core of photovoltaic p ... read more

SOLAR DAILY
SOLAR DAILY
Glow in the visible range detected for the first time in the Martian night

Cerberus Fossae Identified as Primary Source of Marsquakes

The Ones Who Make Curiosity Go: Sols 4001-4003

Curiosity rover clocks 4,000 sols on Mars

SOLAR DAILY
University of Bern's LIMS Set to Uncover Moon's Mysteries in 2027

Lunar Mysteries Unraveled: Topographic Connection to Swirls Discovered

Astronaut who led humanity's first mission around the Moon dead at 95

Australian-Backed SPIDER Payload to Fly on Firefly's 2026 Lunar Mission

SOLAR DAILY
Salts and organics observed on Ganymede's surface by June

New jet stream discovered in Jupiter's upper atmosphere

Uranus aurora discovery offers clues to habitable icy worlds

How NASA is protecting Europa Clipper from space radiation

SOLAR DAILY
Major $200M gift propels scientific research in the search for life beyond earth

Webb findings support long-proposed process of planet formation

Scorching, seven-planet system revealed by new Kepler Exoplanet list

Jurassic worlds might be easier to spot than modern Earth

SOLAR DAILY
US regulator greenlights Starship's next launch on Friday

SpaceX Falcon-9 rocket launches with telecommunications satellites aboard

HK, Macao add thrust to China's space exploration

UK and European Space Agency Commit Funding for Shetland Satellite Launch

SOLAR DAILY
New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

Chinese astronauts return to Earth with fruitful experimental results

Chinese astronauts return to Earth after 'successful' mission

SOLAR DAILY
Hayabusa2 Unveils New Clues on Solar System's Beginnings from Asteroid Samples

SwRI-led Lucy observes first-ever contact binary orbiting an asteroid

SwRI-led Lucy mission shows Dinkinesh asteroid is actually a binary

Dust's Pivotal Role in Dinosaur Extinction Highlighted by Study

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.