Space Travel News  
SOLAR DAILY
Scientists propose novel bilayer structure for crystalline silicon solar cells
by Staff Writers
Shanghai, China (SPX) Dec 09, 2021

Photovoltaic performance of the c-Si solar cells employing NiOx/MoOx bilayer as hole-selective contacts.

Researchers from the Shanghai Advanced Research Institute (SARI) of the Chinese Academy of Sciences have proposed a novel "bilayer" structure composing of different transition metal oxide (TMO) thin films in crystalline silicon (c-Si) solar cells in order to improve the cells' efficiency.

The researchers combined NiOx and MoOx films into a bilayer structure that extracts "hole carriers" from c-Si more efficiently than single-layer films can. The results were published in Cell Reports Physical Science.

"Hole carriers" carry a positive charge. Together with electrons, which have opposite polarity, they were created after c-Si absorbs sun light. By extracting positive holes and negative electrons from c-Si to external circuits, the sun light is converted to usable electricity - this is what a c-Si solar cell does. "Extracting" carriers from c-Si is critical and they can be realized by carrier-selective contacts (CSCs) such as TMO films.

CSCs play an important role in improving the power conversion efficiency (PCE) of c-Si cells. Existing single-layer, thin TMO films such as MoOx or NiOx cannot effectively extract the desired carriers-mainly holes, thus leading to c-Si solar cells with mediocre efficiency.

In a NiOx/MoOx bilayer structure, however, MoOx can induce band bending at the interface, which is favorable for hole carrier extraction. Moreover, NiOx helps to block undesired electron carriers. This is confirmed by both band alignment simulation and minority carrier lifetime measurements.

Taking advantages of these features, the researchers reported a remarkable PCE of 21.31% in c-Si solar cells employing NiOx/MoOx bilayers.

Moreover, forming an additional ultra-thin SiOx layer on the silicon surface can further suppress loss pathways such as recombination, etc.

As a consequence, using an NiOx/SiOx/MoOx structure can further boost the device's PCE to 21.60%. This is the highest reported efficiency of any c-Si solar cell employing MoOx-based hole-selective contacts instead of a costly a-Si:H passivation layer, according to the researchers.

This study highlights a promising and robust approach to employing bilayers as efficient structures for extracting hole carriers. It serves as an inspiring guide for tackling challenges in the field of passivating contact c-Si solar cells.

This work was supported by the National Natural Science Foundation of China, the Natural Science Foundation of Shanghai, and the Shanxi Science and Technology Department, among others.

Research Report: "NiOx/MoOx bilayer as an efficient hole-selective contact in crystalline silicon solar cells"


Related Links
Shanghai Advanced Research Institute
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Microgrids and solar reduce risk of power outages
Washington DC (SPX) Dec 09, 2021
Climate change is fueling more floods, droughts, wildfires, and extreme storms across the United States. As a result, aging power grids are being pushed beyond their limits, sometimes with deadly impacts. (In 2020, a series of unusual winter storms knocked the power out in Texas for days - leading to shortages of water and heat and more than 100 deaths.) New research on ways to make electrical systems more resilient and restore power to people and critical facilities faster will be highlighted dur ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Rover escapes from sand trap

Ingenuity heading north into Seitah for Flight 17

ESA's Mars Express unravels mystery of martian moon using 'fake' flybys

Sols 3314-3315: Bountiful, Beautiful Boulders!

SOLAR DAILY
China's lunar rover spots cube-like object on Moon, sparking curiosity

High-Speed Lunar Surface Transportation

Lunar radar data uncovers new clues about moon's ancient past

Asteroid material deposited during large impacts record the moon's ancient magnetic field

SOLAR DAILY
Planet decision that booted out Pluto is rooted in folklore, astrology

Are Water Plumes Spraying from Europa

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

SOLAR DAILY
Airbus will build ESA's Ariel exoplanet satellite

Giant planets could reach "maturity" much earlier than previously thought

Bolstering planetary biosecurity in an era of space exploration

Discovery Alert: 172 Possible Planets? A New Roadmap to Distant Worlds

SOLAR DAILY
European space firm to build small, reusable launcher

NASA awards Artemis contract for future SLS boosters

Galileo launch postponed

Rocket Lab readies Electron for lift-off in fastest launch turnaround yet

SOLAR DAILY
First crew of space station provide a full update on China's progress

Milestone mission for China's first commercial rocket company

China to livestream first space class from Tiangong space station

Tianzhou cargo craft to help advance science

SOLAR DAILY
NASA's next-generation asteroid impact monitoring system goes online

New study shows the largest comet ever observed was active at near-record distance

430-foot asteroid expected to swipe past Earth on Monday

New opportunities to study ions in space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.