. Space Travel News .




.
SOLAR DAILY
Scientists lay out plans for efficient harvesting of solar energy
by Staff Writers
London UK (SPX) Sep 28, 2011

File image.

Solar power could be harvested more efficiently and transported over long distances using tiny molecular circuits, according to research inspired by new insights into natural photosynthesis.

Incorporating the latest research into how plants, algae and some bacteria use quantum mechanics to optimise energy production via photosynthesis, scientists have set out how to design molecular "circuitry" that is 10 times smaller than the thinnest electrical wire in computer processors. Published in Nature Chemistry, the report discusses how tiny molecular energy grids could capture, direct, regulate and amplify raw solar energy.

Professor Gregory Scholes, lead author from the University of Toronto said: "Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules. The energy is stored fleetingly as vibrating electrons and then transferred to a suitable reactor.

"It is the same in biological systems. In photosynthesis, for example, antenna complexes comprised of chlorophyll capture sunlight and direct the energy to special proteins that help make oxygen and sugars. It is like plugging those proteins (called reaction centres) into a solar power socket."

In natural systems energy from sunlight is captured by 'coloured' molecules called dyes or pigments, but is only stored for a billionth of a second. This leaves little time to route the energy from pigments to the molecular machinery that produces fuel or electricity.

The key to transferring and storing energy very quickly is to harness the collective quantum properties of antennae, which are made up of just a few tens of pigments.

Dr Alexadra Olaya-Castro, co-author of the paper from UCL's department of Physics and Astronomy said: "On a bright sunny day, more than 100 million billion red and blue "coloured" photons strike a leaf each second.

"Under these conditions plants need to be able to both use the energy that is required for growth but also to get rid of excess energy that can be harmful. Transferring energy quickly and in a regulated manner are the two key features of natural light-harvesting systems.

"By assuring that all relevant energy scales involved in the process of energy transfer are more or less similar, natural antennae manage to combine quantum and classical phenomena to guarantee efficient and regulated capture, distribution and storage of the sun's energy."

Summary of lessons from nature about concentrating and distributing solar power with nanoscopic antennae:

1. The basic components of the antenna are efficient light absorbing molecules. These photo-energy absorbers should be appropriately distributed to guarantee that there is an even probability of converting sun energy into vibrating electrons across the whole antennae.

2. Take advantage of the collective properties of light-absorbing molecules by grouping them close together. This will make them exploit quantum mechanical principles so that the antenna can: i) absorb different colours ii) create energy gradients to favour unidirectional transfer and iii) possibly exploit quantum coherence for energy distribution -several energy transfer pathways can be exploited at once.

3. Make sure that the relevant energy scales involved in the energy transfer process are more or less resonant. This will guarantee that both classical and quantum transfer mechanisms are combined to create regulated and efficient distribution of energy across short and long-range distances when many antennae are connected.

4. An antenna should transfer energy not as fast as possible but as fast as necessary. This means that regulatory mechanisms need to be integrated in the antenna. For instance, if necessary, combine light-absorbing molecules with a few local "sinks" that dissipate excess of damaging energy.

Related Links
University College London
All About Solar Energy at SolarDaily.com




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



SOLAR DAILY
Nature offers key lessons on harvesting solar power
Toronto, ON (SPX) Sep 28, 2011
Clean solutions to human energy demands are essential to our future. While sunlight is the most abundant source of energy at our disposal, we have yet to learn how to capture, transfer and store solar energy efficiently. According to University of Toronto chemistry professor Greg Scholes, the answers can be found in the complex systems at work in nature. "Solar fuel production often starts ... read more


SOLAR DAILY
Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

Double prime for Astrium on next Ariane launch

SOLAR DAILY
Russia to resume deep space explorations with Phobos expedition

Opportunity Continues to Study Chester Lake Rock Outcrop

Young Clays on Mars Could Have Been Habitable Regions

Opportunity on verge of new discovery

SOLAR DAILY
China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

Second bid to launch NASA's Moon-bound spacecraft

SOLAR DAILY
Dwarf Planet Mysteries Beckon to New Horizons

The PI's Perspective: Visiting Four Moons, in Just Four Years, for All Mankind

Citizen Scientists Discover a New Horizons Flyby Target

View from the Summit: Hunting for KBOs at the Top of the World

SOLAR DAILY
From the Comfort of Home, Web Users May Have Found New Planets

Rocky Planets Could Have Been Born as Gas Giants

How Common Are Earth-Moon Planetary Systems

From Star Wars to Science Fact: Tatooine-Like Planet Discovered

SOLAR DAILY
New packaging for old US rocket

External Tank Was Backbone Of Shuttle Launches

The US will conquer deep space with Russian engines

Monster Rocket Will Eat American Space Program

SOLAR DAILY
Chang'e-2 sends data back from L2

Mythbusting for Tiangong

Tiangong-1 launch will pave way for China's first space station

China to launch unmanned space module by Sept 30

SOLAR DAILY
Exploring an asteroid with the Desert RATS

Dawn Collects a Bounty of Beauty from Vesta

Dawn Flies Around Vesta

Astronomers Plan Last Look at Asteroid 1999 RQ36 Before OSIRIS-REx Launch


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement