Space Travel News  
WOOD PILE
Scientists examine impact of high-severity fires on conifer forests
by Staff Writers
Boston MA (SPX) May 01, 2017


illustration only

The ability of some Western conifer forests to recover after severe fire may become increasingly limited as the climate continues to warm, scientists from the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest found in a new study published in Global Change Biology.

Although most of these cone-bearing evergreen trees are well adapted to fire, the study examines whether two likely facets of climate change - hotter, drier conditions and larger, more frequent and severe wildfires - could potentially transform landscapes from forested to shrub-dominated systems.

As part of the study, which was funded by the National Science Foundation, scientists examined conifer forests in the richly diverse Klamath region of northern California and southwestern Oregon. The Klamath region is a botanical hotspot, home to 29 species of conifers and a suite of plant species that exist nowhere else on earth.

The researchers sampled sites that burned severely in wildfires between 1987 and 2008. They found that, after fire, hardwood trees and shrubs quickly established by either re-sprouting from surviving root systems or growing rapidly from seeds that persisted in the soil. These plants dominated the vegetation for at least the first few decades after fire. Most conifers, on the other hand, were slow to compete, relying on establishment of new seedlings borne by trees in less severely burned patches or from outside the fire perimeter.

As a result, conifers had only a few years to establish before the regenerating hardwoods and shrubs grew dense enough to suppress them.

"If they miss that window there's much less chance of successful establishment and their growth will be slower," says study author Kristina Anderson-Teixeira, a forest ecologist at SCBI and the Smithsonian Tropical Research Institute. In fact, the study found that the longer the interval between the fire and the conifer's establishment, the slower the tree's growth.

"The Klamath ecosystem is an important transition zone separating the shrubs of the California chaparral from the Pacific Northwest's temperate rainforest," says Jonathan Thompson, a Senior Ecologist at Harvard Forest and co-author on the study. "Our work suggests climate change will push the chaparral north at the expense of the Klamath's existing conifer forests."

Because most conifers depend on seed dispersal from surviving trees, larger patches of high-severity fire could put a growing portion of the landscape at risk of poor post-fire conifer regeneration. The study suggests this trend could be even more pronounced because under drier conditions more abundant seed sources are needed to support conifer seedlings at densities sufficient for forest recovery.

In addition, previous research by Thompson and others suggests the young, shrub-dominated vegetation that develops after severe fire tends to burn more severely in subsequent fires than older conifer forests, meaning that once severe fire converts a conifer forest to a shrub-dominated system, the non-forested vegetation could be perpetuated almost indefinitely through a cycle of repeated burning.

"We see climate change affecting the system from two directions," says Thompson. "First, it is slowing conifer growth, keeping them low to the ground and more vulnerable to future fires for a longer period of time. Second, climate change is making fire more frequent. This phenomenon, which researchers call the 'interval squeeze,' threatens to transform this and other arid, fire-prone forests worldwide."

Still, portions of the landscape may be relatively resilient. For example, conifers were able to regenerate in wetter sites, even amid relatively large high-severity patches with few surviving trees. "The Klamath region has supported conifers for thousands of years," says Thompson. "Some patches will surely survive no matter what climate throws at them."

The researchers hope these findings could help provide information needed to prioritize management efforts.

"Our study helps to identify the places that are at greatest risk of forest loss, where managers could either target management to promote post-fire forest recovery, or accept that we're going to see some degree of landscape transformation in the coming decades and learn to meet ecological objectives under the new climate and disturbance regimes," says Alan Tepley, a forest ecologist with SCBI and the study's lead author.

These findings could also be applied in a broader context to other forest ecosystems. "There are concerns for much of the western U.S. and other similar landscapes that under climate change, forests may be less likely to regenerate," says Anderson-Teixeira.

"And that can then reduce forest cover on the landscape and result in big losses of carbon storage." According to Anderson-Teixeira, the fate of the Klamath region depends in part on societal carbon emissions, where increased emissions lead to more warming, which ultimately could result in more forest loss.

WOOD PILE
Deforestation from a tree's perspective at the TED conference
Vancouver (AFP) April 28, 2017
A pair of filmmakers at the prestigious TED Conference used virtual reality to allow people to experience the ravages of deforestation - from the perspective of a tree. A presentation Thursday simply titled "Tree" combined sound, sight, smell and touch to let people feel first-hand what is lost when lush forest burns down. "It was very real: At one point I was going to take the headset ... read more

Related Links
Forest Science at Harvard
Forestry News - Global and Local News, Science and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WOOD PILE
WOOD PILE
How Old are Martian Gullies

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

SwRI-led team discovers lull in Mars' giant impact history

WOOD PILE
Russia, US Ready to Give You a Lift to Moon Orbit, ISS

Swedish Institute of Space Physics goes back to the Moon

India dreams of harvesting lunar dust to power fusion rectors

NASA Scientists Find Dynamo at Lunar Core May Have Formed Magnetic Field

WOOD PILE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter

WOOD PILE
'Iceball' Planet Discovered Through Microlensing

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

What can we learn from dinosaur proteins

Newly Discovered Exoplanet May be Best Candidate in Search for Signs of Life

WOOD PILE
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

WOOD PILE
China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

China's Long March-5 Y2 carrier rocket leaves for launch site

WOOD PILE
Dawn Observing Ceres; 3rd Reaction Wheel Malfunctions

Close call: When asteroids whisk past Earth

Landslides on Ceres Reflect Ice Content

New study ranks hazardous asteroid effects from least to most destructive









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.