Space Travel News  
TECTONICS
Scientists detect unexpected widespread structures near Earth's core
by Staff Writers
College Park MA (SPX) Jun 15, 2020

Earthquakes send sound waves through the Earth. Seismograms record the echoes as those waves travel along the core-mantle boundary, diffracting and bending around dense rock structures. New research from University of Maryland provides the first broad view of these structures, revealing them to be much more widespread than previously known.

University of Maryland geophysicists analyzed thousands of recordings of seismic waves, sound waves traveling through the Earth, to identify echoes from the boundary between Earth's molten core and the solid mantle layer above it. The echoes revealed more widespread, heterogenous structures--areas of unusually dense, hot rock--at the core-mantle boundary than previously known.

Scientists are unsure of the composition of these structures, and previous studies have provided only a limited view of them. Better understanding their shape and extent can help reveal the geologic processes happening deep inside Earth. This knowledge may provide clues to the workings of plate tectonics and the evolution of our planet.

The new research provides the first comprehensive view of the core-mantle boundary over a wide area with such detailed resolution. The study was published in the June 12, 2020, issue of the journal Science.

The researchers focused on echoes of seismic waves traveling beneath the Pacific Ocean basin. Their analysis revealed a previously unknown structure beneath the volcanic Marquesas Islands in the South Pacific and showed that the structure beneath the Hawaiian Islands is much larger than previously known.

"By looking at thousands of core-mantle boundary echoes at once, instead of focusing on a few at a time, as is usually done, we have gotten a totally new perspective," said Doyeon Kim, a postdoctoral fellow in the UMD Department of Geology and the lead author of the paper. "This is showing us that the core-mantle boundary region has lots of structures that can produce these echoes, and that was something we didn't realize before because we only had a narrow view."

Earthquakes generate seismic waves below Earth's surface that travel thousands of miles. When the waves encounter changes in rock density, temperature or composition, they change speed, bend or scatter, producing echoes that can be detected. Echoes from nearby structures arrive more quickly, while those from larger structures are louder. By measuring the travel time and amplitude of these echoes as they arrive at seismometers in different locations, scientists can develop models of the physical properties of rock hidden below the surface. This process is similar to the way bats echolocate to map their environment.

For this study, Kim and his colleagues looked for echoes generated by a specific type of wave, called a shear wave, as it travels along the core-mantle boundary. In a recording from a single earthquake, known as a seismogram, echoes from diffracted shear waves can be hard to distinguish from random noise. But looking at many seismograms from many earthquakes at once can reveal similarities and patterns that identify the echoes hidden in the data.

Using a machine learning algorithm called Sequencer, the researchers analyzed 7,000 seismograms from hundreds of earthquakes of 6.5 magnitude and greater occurring around the Pacific Ocean basin from 1990 to 2018. Sequencer was developed by the new study's co-authors from Johns Hopkins University and Tel Aviv University to find patterns in radiation from distant stars and galaxies. When applied to seismograms from earthquakes, the algorithm discovered a large number of shear wave echoes.

"Machine learning in earth science is growing rapidly and a method like Sequencer allows us to be able to systematically detect seismic echoes and get new insights into the structures at the base of the mantle, which have remained largely enigmatic," Kim said.

The study revealed a few surprises in the structure of the core-mantle boundary.

"We found echoes on about 40% of all seismic wave paths," said Vedran Leki?, an associate professor of geology at UMD and a co-author of the study. "That was surprising because we were expecting them to be more rare, and what that means is the anomalous structures at the core-mantle boundary are much more widespread than previously thought."

The scientists found that the large patch of very dense, hot material at the core-mantle boundary beneath Hawaii produced uniquely loud echoes, indicating that it is even larger than previous estimates. Known as ultralow-velocity zones (ULVZs), such patches are found at the roots of volcanic plumes, where hot rock rises from the core-mantle boundary region to produce volcanic islands. The ULVZ beneath Hawaii is the largest known.

This study also found a previously unknown ULVZ beneath the Marquesas Islands.

"We were surprised to find such a big feature beneath the Marquesas Islands that we didn't even know existed before," Leki? said. "This is really exciting, because it shows how the Sequencer algorithm can help us to contextualize seismogram data across the globe in a way we couldn't before."

Research Report: "Sequencing Seismograms: A Panoptic View of Scattering in the Core-Mantle Boundary Region"


Related Links
University Of Maryland
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECTONICS
Which factors control the height of mountains?
Potsdam, Germany (SPX) Jun 15, 2020
Which forces and mechanisms determine the height of mountains? A group of researchers from Munster and Potsdam has now found a surprising answer: It is not erosion and weathering of rocks that determine the upper limit of mountain massifs, but rather an equilibrium of forces in the Earth's crust. This is a fundamentally new and important finding for the earth sciences. The researchers report on it in the scientific journal Nature. The highest mountain ranges on Earth - such as the Himalayas ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
TECTONICS
Three new views of Mars' moon Phobos

Perseverance Mars Rover's extraordinary sample-gathering system

Scientist captures new images of Martian moon Phobos to help determine its origins

Martian moon orbit hints at ancient ring

TECTONICS
NASA awards Northrop Grumman Artemis contract for Gateway Crew Cabin

NASA to announce selection of company to fly VIPER rover to Moon

Xplore to host Space for Humanity Payload on its first lunar mission

New study provides maps, ice favorability index to companies looking to mine the moon

TECTONICS
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

TECTONICS
Plant pathogens can adapt to a variety of climates, hosts

Presence of airborne dust could signify increased habitability of distant planets

Ancient asteroid impacts created the ingredients of life on Earth and Mars

Mirror image of Earth and Sun

TECTONICS
New Zealand rocket launch postponed due to wind gusts

Agency seeks hypersonic missile defense system proposals

China plans to develop new solid-fueled carrier rocket

ULA on track to launch new Vulcan rocket in early 2021

TECTONICS
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

TECTONICS
NASA's OSIRIS-REx discovers sunlight can crack rocks on Asteroid Bennu

OSIRIS-REx finds heat, cold fracturing rocks on Asteroid Bennu

Ancient micrometeoroids carried specks of stardust, water to asteroid 4 Vesta

STEREO watches Comet ATLAS as Solar Orbiter crosses its tail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.