Space Travel News  
BIO FUEL
Scientists convert fire-risk wood waste into biofuel
by Staff Writers
Berkeley CA (SPX) Apr 26, 2021

A snapshot of the conversion process, from woodchips (far left) all the way to purified ethanol.

Reliance on petroleum fuels and raging wildfires: Two separate, large-scale challenges that could be addressed by one scientific breakthrough.

Teams from Lawrence Berkeley National Laboratory (Berkeley Lab) and Sandia National Laboratories have collaborated to develop a streamlined and efficient process for converting woody plant matter like forest overgrowth and agricultural waste - material that is currently burned either intentionally or unintentionally - into liquid biofuel. Their research was published recently in the journal ACS Sustainable Chemistry and Engineering.

"According to a recent report, by 2050 there will be 38 million metric tons of dry woody biomass available each year, making it an exceptionally abundant carbon source for biofuel production," said Carolina Barcelos, a senior process engineer at Berkeley Lab's Advanced Biofuels and Bioproducts Process Development Unit (ABPDU).

However, efforts to convert woody biomass to biofuel are typically hindered by the intrinsic properties of wood that make it very difficult to break down chemically, added ABPDU research scientist Eric Sundstrom.

"Our two studies detail a low-cost conversion pathway for biomass sources that would otherwise be burned in the field or in slash piles, or increase the risk and severity of seasonal wildfires. We have the ability to transform these renewable carbon sources from air pollution and fire hazards into a sustainable fuel."

In a study led by Barcelos and Sundstrom, the scientists used non-toxic chemicals, commercially available enzymes, and a specially engineered strain of yeast to convert wood into ethanol in a single reactor, or "pot."

Furthermore, a subsequent technological and economic analysis helped the team identify the necessary improvements required to reach ethanol production at $3 per gasoline gallon equivalent (GGE) via this conversion pathway. The work is the first-ever end-to-end process for ethanol production from woody biomass featuring both high conversion efficiency and a simple one-pot configuration. (As any cook knows, one-pot recipes are always easier than those requiring multiple pots, and in this case, it also means lower water and energy usage.)

In a complementary study, led by John Gladden and Lalitendu Das at the Joint BioEnergy Institute (JBEI), a team fine-tuned the one-pot process so that it could convert California-based woody biomass - such as pine, almond, walnut, and fir tree debris - with the same level of efficiency as existing methods used to convert herbaceous biomass, even when the input is a mix of different wood types.

"Removing woody biomass from forests, like the overgrown pines of the Sierra, and from agricultural areas like the almond orchards of California's Central Valley, we can address multiple problems at once: disastrous wildfires in fire-prone states, air pollution hazards from controlled burning of crop residues, and our dependence on fossil fuels," said Das, a postdoctoral fellow at JBEI and Sandia. "On top of that, we would significantly reduce the amount of carbon added to the atmosphere and create new jobs in the bioenergy industry."

Ethanol is already used as an emissions-reducing additive in conventional gasoline, typically constituting about 10% of the gas we pump into our cars and trucks. Some specialty vehicles are designed to operate on fuel with higher ethanol compositions of up to 83%.

In addition, the ethanol generated from plant biomass can be used as an ingredient for making more complex diesel and jet fuels, which are helping to decarbonize the difficult-to-electrify aviation and freight sectors. Currently, the most common source of bio-based ethanol is corn kernels - a starchy material that is much easier to break down chemically, but requires land, water, and other resources to produce.

These studies indicate that woody biomass can be efficiently broken down and converted into advanced biofuels in an integrated process that is cost-competitive with starch-based corn ethanol. These technologies can also be used to produce "drop-in" biofuels that are chemically identical to compounds already present in gasoline and diesel.

The next steps in this effort is to develop, design, and deploy the technology at the pilot scale, which is defined as a process that converts 1 ton of biomass per day. The Berkeley Lab teams are working with Aemetis, an advanced renewable fuels and biochemicals company based in the Bay Area, to commercialize the technology and launch it at larger scales once the pilot phase is complete.

Research paper


Related Links
Lawrence Berkeley National Laboratory
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
New 'biodegradable' plastics actually degrade
Washington DC (UPI) Apr 21, 2021
Most plastics advertised as "biodegradable" aren't all that degradable. In fact, researchers estimate that most of these supposedly eco-friendly plastics end up in landfills and last just as long as forever plastics. Scientists at the University of California, Berkeley, have developed a new method for composting biodegradable plastics - one that actually works. Most compostable plastics are composed of a kind of polyester called polylactic acid, or PLA. In the lab, researchers deployed ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
NASA's Mars helicopter Ingenuity completes third successful flight

Mars has right ingredients for present-day microbial life beneath its surface, study finds

Mars' changing habitability recorded by ancient dune fields in Gale crater

Mars 2020 used key systems at AFRL for pre flight testing

BIO FUEL
The Hunt for the UK's Moon Trees

Elon Musk's SpaceX wins $2.9B contract to build lunar lander

China releases lunar sample data online

UAE to send rover to the Moon in 2022

BIO FUEL
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

BIO FUEL
NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

As different as day and night

Researchers identify five double star systems potentially suitable for life

BIO FUEL
SpaceX in orbit on route to ISS

Arianespace to serve OneWeb's ambitions with 36 more satellites to be launched

American Pacific invests in Frontier Aerospace

SpaceX set to take four astronauts to ISS Thursday

BIO FUEL
China's space-tracking ship departs on new mission in Pacific

China Orbiting 400 Satellites, Heading for 1,000 by 2030, US Space Command Chief Says

Chinese rocket for space station mission arrives at launch site

Ningbo to build $3.05b rocket launchpad site

BIO FUEL
NASA to participate in tabletop exercise simulating asteroid impact

Hide and Seek - How NASA's Lucy Mission Team Discovered Eurybates' Satellite

Osiris-Rex leaves its mark on Asteroid Bennu

Drone test of Hera mission's asteroid radar









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.