Space Travel News  
FLORA AND FAUNA
Scientists Decipher 3 Billion-Year-old Genomic Fossils

The figure shows the evolution of gene families in ancient genomes across the Tree of Life. The sizes of the little pie charts scale with the number of evolutionary events in lineages, slices indicate event types: gene birth (red), duplication (blue), horizontal gene transfer (green), and loss (yellow). The Archean Expansion period (3.33 to 2.85 billion years ago) is highlighted in green. Credit: Lawrence David
by Staff Writers
Boston MA (SPX) Dec 21, 2010
About 580 million years ago, life on Earth began a rapid period of change called the Cambrian Explosion, a period defined by the birth of new life forms over many millions of years that ultimately helped bring about the modern diversity of animals. Fossils help palaeontologists chronicle the evolution of life since then, but drawing a picture of life during the 3 billion years that preceded the Cambrian Period is challenging, because the soft-bodied Precambrian cells rarely left fossil imprints. However, those early life forms did leave behind one abundant microscopic fossil: DNA.

Because all living organisms inherit their genomes from ancestral genomes, computational biologists at MIT reasoned that they could use modern-day genomes to reconstruct the evolution of ancient microbes. They combined information from the ever-growing genome library with their own mathematical model that takes into account the ways that genes evolve: new gene families can be born and inherited; genes can be swapped or horizontally transferred between organisms; genes can be duplicated in the same genome; and genes can be lost.

The scientists traced thousands of genes from 100 modern genomes back to those genes' first appearance on Earth to create a genomic fossil telling not only when genes came into being but also which ancient microbes possessed those genes. The work suggests that the collective genome of all life underwent an expansion between 3.3 and 2.8 billion years ago, during which time 27 percent of all presently existing gene families came into being.

Eric Alm, a professor in the Department of Civil and Environmental Engineering and the Department of Biological Engineering, and Lawrence David, who recently received his Ph.D. from MIT and is now a Junior Fellow in the Harvard Society of Fellows, have named this period the Archean Expansion.

Because so many of the new genes they identified are related to oxygen, Alm and David first thought that the emergence of oxygen might be responsible for the Archean Expansion. oxygen did not exist in the Earth's atmosphere until about 2.5 billion years ago when it began to accumulate, likely killing off vast numbers of anerobic life forms in the Great oxidation Event.

"The Great oxidation Event was probably the most catastrophic event in the history of cellular life, but we don't have any biological record of it," says Alm.

Closer inspection, however, showed that oxygen-utilizing genes didn't appear until the tail end of the Archean Expansion 2.8 billion years ago, which is more consistent with the date geochemists assign to the Great oxidation Event.

Instead, Alm and David believe they've detected the birth of modern electron transport, the biochemical process responsible for shuttling electrons within cellular membranes. Electron transport is used to breathe oxygen and by plants and some microbes during photosynthesis when they harvest energy directly from the sun. A form of photosynthesis called oxygenic photosynthesis is believed to be responsible for generating the oxygen associated with the Great oxidation Event, and is responsible for the oxygen we breathe today.

The evolution of electron transport during the Archean Expansion would have enabled several key stages in the history of life, including photosynthesis and respiration, both of which could lead to much larger amounts of energy being harvested and stored in the biosphere.

"our results can't say if the development of electron transport directly caused the Archean Expansion," says David. "Nonetheless, we can speculate that having access to a much larger energy budget enabled the biosphere to host larger and more complex microbial ecosystems."

David and Alm also went on to investigate how microbial genomes evolved after the Archean Expansion by looking at the metals and molecules associated with the genes and how those changed in abundance over time. They found an increasing percentage of genes using oxygen, and enzymes associated with copper and molybdenum, which is consistent with the geological record of evolution.

"What is really remarkable about these findings is that they prove that the histories of very ancient events are recorded in the shared DNA of living organisms," says Alm. "And now that we are beginning to understand how to decode that history, I have hope that we can reconstruct some of the earliest events in the evolution of life in great detail."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
MIT Department of Civil and Environmental Engineering
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


FLORA AND FAUNA
Efficient Phosphorus Use By Phytoplankton
Southampton (UK) (SPX) Dec 20, 2010
Rapid turnover and remodelling of lipid membranes could help phytoplankton cope with nutrient scarcity in the open ocean. A team led by Patrick Martin of the National oceanography Centre has shown that a species of planktonic marine alga can rapidly change the chemical composition of its cell membranes in response to changes in nutrient supply. The findings indicate that the process may be ... read more







FLORA AND FAUNA
ISRO Puts Off GSLV Launch

Arianespace To Launch ESA's First Sentinel Satellite

ISRO Set To Launch Heaviest Satellite For Telecom And TV

The Flight Of The Dragon

FLORA AND FAUNA
Wind And Water Have Shaped Schiaparelli On Mars

The Three Ages Of Mars

Odyssey Orbiter Nears Martian Longevity Record

Drilling For The Future Of Science

FLORA AND FAUNA
Total Lunar Eclipse: 'Up All Night' With NASA

Robotic Excavations Could Help Get Helium 3 From Moon To Earth

A Softer Landing on the Moon

Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

FLORA AND FAUNA
Kuiper Belt Of Many Colors

Reaching The Mid-Mission Milestone On The Way To Pluto

New Horizons Student Dust Counter Instrument Breaks Distance Record

Nitrogen Methane Dominate Icy Surface Of Eris

FLORA AND FAUNA
Qatar-Led International Team Finds Its First Alien World

Planetary Family Portrait Reveals Another Exoplanet

New Pictures Show Fourth Planet In Giant Version Of Our Solar System

Carbon-Rich Planet: A Girl's Best Friend

FLORA AND FAUNA
Brazil launches rocket into suborbit

New JPL Workers Shed Training Wheels For Rocket Launch

Fueling error blamed in loss of satellites

Russia probes navigation system spending after crash

FLORA AND FAUNA
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

FLORA AND FAUNA
Research Points To Better Understanding Of Carbon In Comets

MegaPhase RF Cables Enable Conclusion Of Seven-Year Deep Space Program

Study: Earth's precious metals from space

Dawn On A Smooth And Steady Course


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement