Space Travel News  
DISASTER MANAGEMENT
Satellites reveal cause of Chamoli disaster
by Staff Writers
Paris (ESA) Jun 15, 2021

illustration only

A new study using satellite evidence confirms that a rock and ice avalanche caused the Chamoli disaster in India earlier this year. The resulting mud and debris flood led to massive destruction downstream.

On 7 February 2021, the Chamoli district in the Uttarakhand region of India experienced a humanitarian tragedy when a large mass of rock and ice, around 27 million cubic metres, was released from the steep mountain flank of the Ronti peak.

This collapse caused a flow of debris to barrel down the Ronti Gad, Rishiganga, and Dhauliganga river valleys, causing significant destruction along the route, killing more than 200 people and destroying two major hydropower facilities that were under construction.

In response to this, the International Charter 'Space and Major Disasters', a service that provides satellite images in response to natural and human-made emergencies, was activated. The service provides free access to very high-resolution satellite data such as from Worldview 1/2, Cartosat-1 and Pleiades.

Combined with freely available images from Landsat and the Copernicus Sentinel-2 mission, scientists analysed numerous images acquired before and after the event to quickly determine what was going on and quantify key measures of the event, for example its total volume, elevation differences and travel distances.

This analysis allowed scientists to exclude that a glacier lake outburst flood had been the cause of the disaster. Instead, the study provides satellite evidence that the disaster was caused by a large mass of ice and rock dislodged from the slopes of Ronti Peak, starting as a giant landslide that transformed into a mud and debris flow causing destruction along its path.

The team of 53 scientists and experts came together online in the days following the disaster to re-construct the event and investigate the scope and impact of the flood caused by the landslide. Their study, published on 10 June in the journal Science, not only analysed satellite imagery, but also seismic records and eye-witness videos to determine the timing of the event and produce computer models of the flow.

Lead author Dan Shugar, Associate Professor in the Department of Geoscience at the University of Calgary, commented, "The rapid increase in the number of satellites orbiting Earth allowed our team to understand the basics of what happened in a matter of hours. We now have access to satellites that image every part of Earth every day - sometimes even multiple times per day - and this has really revolutionised how we do this sort of science."

The results of the analysis were also sent to the governmental agencies of India to help them plan and support emergency assistance to the local teams.

Two participants from ESA's Climate Change Initiative, specifically the Glaciers_cci and Permafrost_cci projects, helped with the retrieval and analysis of satellite images which included Copernicus Sentinel-2, PlanetLab and Corona.

Andreas Kaab, from the University of Oslo, was able to determine the volume and ice/rock mixing ratios based on his experience with such events from earlier studies. He explains, "The calculated 80% rock in the avalanche completely converted the 20% glacier ice into water over the 3200 m elevation difference from Ronti Peak to the Tapovan hydropower plant. This conversion is largely responsible for the devastating impact of the resulting mud and debris flood wave."

Among many other technical details, Copernicus Sentinel-2 images revealed that the crack near the bergschrund (a crevasse that forms where moving glacier ice separates from stagnant ice) of the steep hanging glacier opened already some years ago and that an ice avalanche from a neighbouring glacier occurred in 2016. The images from 2016-2020 show the ice avalanche deposit largely melting away over this period.

Frank Paul, from the University of Zurich is science lead of the Glaciers_cci project, and commented: "This study clearly shows that satellite data could play a larger role in future high mountain hazard assessments, in particular for evaluating large and inaccessible areas."

Andreas Kaab added "This specific event was extreme and basically unpredictable. However, rock avalanches are known to be highly mobile, far-reaching and devastating when they mix with snow and ice."

The researchers suggest that in a warmer climate such events might be happening more frequently, and that the full potential of satellite data and knowledge should be utilised to identify possibly dangerous regions.


Related Links
Observing the Earth at ESA
Bringing Order To A World Of Disasters
A world of storm and tempest
When the Earth Quakes


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


DISASTER MANAGEMENT
Tunisian navy rescues 54 migrants heading to Europe
Ben Guerdane, Tunisia (AFP) June 11, 2021
The Tunisian navy and coastguards rescued 54 migrants Friday on a boat heading to Europe that was about to sink in Mediterranean waters, the defence ministry said. The migrants, aged between 15 and 40 and almost all men, left from neighbouring Libya late Thursday. But their boat began to founder in waters off the southern Tunisian port of Ben Guerdane, the defence ministry said in a statement. The migrants - who include citizens of multiple nationalities, many from sub-Saharan African count ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

DISASTER MANAGEMENT
DISASTER MANAGEMENT
China reveals photos taken by Mars rover

Perseverance Rover Begins Its First Science Campaign on Mars

NASA's Mars helicopter Ingenuity flies for 7th time

China releases new Mars image taken by Tianwen 1 probe

DISASTER MANAGEMENT
Lunar sample tells ancient story with help of Curtin's world-class facilities

NASA selects new science investigations for future lunar deliveries

KSAT to support Intuitive Machines' missions to the Moon

Dust: An Out-of-This World Problem

DISASTER MANAGEMENT
First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede

Jupiter antenna that came in from the cold

DISASTER MANAGEMENT
Liquid water on exomoons of free-floating planets

Connecting a star's chemical composition and planet formation

Scientists discover new exoplanet with an atmosphere ripe for study

Frozen rotifer reanimated after 24,000 years in the Arctic tundra

DISASTER MANAGEMENT
Scientists identify distinctive deep infrasound rumbles of space launches

Launch of competition for young people to help make UK spaceflight history

SpaceX Cargo Dragon truck docks at Space Station

SpaceX's night-time launch sends SiriusXM satellite into orbit

DISASTER MANAGEMENT
Chinese rocket with manned crew to blast off Thursday

China to send 3 astronauts to space station

Effective power supply energizes China's space station project

Manned space mission preps for takeoff

DISASTER MANAGEMENT
Asteroid 16 Psyche might not be what scientists expected

Earth's meteorite impacts over past 500 million years tracked

NASA's OSIRIS-REx celebrates perfect departure maneuver from Asteroid Bennu

The Incredible Adventures of the Hera mission - Presenting Hera









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.