Subscribe free to our newsletters via your
. Space Travel News .




CLIMATE SCIENCE
Salt marsh carbon may play role in slowing climate warming
by Staff Writers
Charlottesville VA (SPX) Oct 01, 2012


File image.

A warming climate and rising seas will enable salt marshes to more rapidly capture and remove carbon dioxide from the atmosphere, possibly playing a role in slowing the rate of climate change, according to a new study led by a University of Virginia environmental scientist and published in the Sept. 27 issue of the journal Nature.

Carbon dioxide is the predominant so-called "greenhouse gas" that acts as sort of an atmospheric blanket, trapping the Earth's heat. Over time, an abundance of carbon dioxide can change the global climate, according to generally accepted scientific theory. A warmer climate melts polar ice, causing sea levels to rise.

A large portion of the carbon dioxide in the atmosphere is produced by human activities, primarily the burning of fossil fuels to energize a rapidly growing world human population.

"We predict that marshes will absorb some of that carbon dioxide, and if other coastal ecosystems - such as seagrasses and mangroves - respond similarly, there might be a little less warming," said the study's lead author, Matt Kirwan, a research assistant professor of environmental sciences in the College of Arts and Sciences.

Salt marshes, made up primarily of grasses, are important coastal ecosystems, helping to protect shorelines from storms and providing habitat for a diverse range of wildlife, from birds to mammals, shell- and fin-fishes and mollusks. They also build up coastal elevations by trapping sediment during floods, and produce new soil from roots and decaying organic matter.

"One of the cool things about salt marshes is that they are perhaps the best example of an ecosystem that actually depends on carbon accumulation to survive climate change: The accumulation of roots in the soil builds their elevation, keeping the plants above the water," Kirwan said.

Salt marshes store enormous quantities of carbon, essential to plant productivity, by, in essence, breathing in the atmospheric carbon and then using it to grow, flourish and increase the height of the soil. Even as the grasses die, the carbon remains trapped in the sediment.

The researchers' model predicts that under faster sea-level rise rates, salt marshes could bury up to four times as much carbon as they do now.

"Our work indicates that the value of these ecosystems in capturing atmospheric carbon might become much more important in the future, as the climate warms," Kirwan said.

But the study also shows that marshes can survive only moderate rates of sea level rise. If seas rise too quickly, the marshes could not increase their elevations at a rate rapid enough to stay above the rising water.

And if marshes were to be overcome by fast-rising seas, they no longer could provide the carbon storage capacity that otherwise would help slow climate warming and the resulting rising water.

"At fast levels of sea level rise, no realistic amount of carbon accumulation will help them survive," Kirwan noted.

Kirwan and his co-author, Simon Mudd, a geosciences researcher at the University of Edinburgh in Scotland, used computer models to predict salt marsh growth rates under different climate change and sea-level scenarios.

.


Related Links
University of Virginia
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Extreme climate change linked to early animal evolution
Riverside, CA (SPX) Oct 01, 2012
An international team of scientists, including geochemists from the University of California, Riverside, has uncovered new evidence linking extreme climate change, oxygen rise, and early animal evolution. A dramatic rise in atmospheric oxygen levels has long been speculated as the trigger for early animal evolution. While the direct cause-and-effect relationships between animal and environ ... read more


CLIMATE SCIENCE
Ariane rocket launches two telecom satellites

Ariane 5 maintains Arianespace's track record of success with the launch of ASTRA 2F and GSAT-10

California Governor Signs the Spaceflight Liability and Immunity Act

Processing is underway with the next Automated Transfer Vehicle to be orbited by Arianespace

CLIMATE SCIENCE
Rock Grinding Action

Learning to live on Mars

Mars Rover Opportunity Working at 'Matijevic Hill'

Curiosity Completes Longest Drive Yet

CLIMATE SCIENCE
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

CLIMATE SCIENCE
Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

CLIMATE SCIENCE
The Magnetic Wakes of Pulsar Planets

Stagnant Interiors Suppress Chances of Life on Super-Earths

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

CLIMATE SCIENCE
Australian hypersonic test a success

ORBITEC Has Real "Vision" For Its New AUSEP Rocket Engine

NASA Selects Space Launch System Advanced Development Proposals

Space formula of Konstantin Tsiolkovsky

CLIMATE SCIENCE
China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

CLIMATE SCIENCE
A New Dawn For NASA's Asteroid Explorer

Troughs Suggest Stunted Planetary Development Of Vesta

Mysterious Case of Asteroid Oljato's Magnetic Disturbance

Asteroid's Troughs Suggest Stunted Planet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement