Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Salmon runs boom, go bust over centuries
by Staff Writers
Seattle WA (SPX) Jan 17, 2013


File image.

Salmon runs are notoriously variable: strong one year, and weak the next. New research shows that the same may be true from one century to the next. Scientists in the past 20 years have recognized that salmon stocks vary not only year to year, but also on decades-long time cycles. One example is the 30-year to 80-year booms and busts in salmon runs in Alaska and on the West Coast driven by the climate pattern known as the Pacific Decadal Oscillation.

Now work led by University of Washington researchers reveals those decadal cycles may overlay even more important, centuries-long conditions, or regimes, that influence fish productivity. Cycles lasting up to 200 years were found while examining 500-year records of salmon abundance in Southwest Alaska. Natural variations in the abundance of spawning salmon are as large those due to human harvest.

"We've been able to reconstruct what salmon runs looked like before the start of commercial fishing. But rather than finding a flat baseline - some sort of long-term average run size - we've found that salmon runs fluctuated hugely, even before commercial fishing started. That these strong or weak periods could persist for sometimes hundreds of years means we need to reconsider what we think of as 'normal' for salmon stocks," said Lauren Rogers, who did this work while earning her doctorate in aquatic and fishery sciences at the UW and is now a post-doctoral researcher with the University of Oslo, Norway.

Rogers is the lead author of a paper on the findings in the Jan. 14 online early edition of the Proceedings of the National Academy of Sciences.

"Surprisingly, salmon populations in the same regions do not all show the same changes through time. It is clear that the salmon returning to different rivers march to the beat of a different - slow - drummer," said Daniel Schindler, UW professor of aquatic and fishery sciences and co-author of the paper.

"The implications for management are profound," Schindler said. "While it is convenient to assume that ecosystems have a constant static capacity for producing fish, or any natural resource, our data demonstrate clearly that capacity is anything but stationary. Thus, management must be ready to reduce harvesting when ecosystems become unexpectedly less productive and allow increased harvesting when ecosystems shift to more productive regimes.

"Management should also allow, and probably even encourage, fishers to move among rivers to exploit salmon populations that are particularly productive. It is not realistic to assume that all rivers in a region will perform equally well or poorly all the time," he said.

The researchers examined sediment cores collected from 20 sockeye nursery lakes within 16 major watersheds in southwestern Alaska, including those of Bristol Bay. The scientists homed in on the isotopic signature of nitrogen that salmon accumulate in the ocean and leave behind in lake sediments when they die: When there was a lot of such nitrogen in the sediments, it meant returning runs during that time period were abundant; when there was little, runs had declined.

Climate is not the only reason for long-term changes in salmon abundance. Changes in food webs, diseases or other factors might be involved; however, at present, there are no clear explanations for the factors that cause the long-term variability observed in this study. Most, but not all, of the lakes examined showed declines in the kind of nitrogen the scientists were tracking beginning around 1900, once commercial fisheries had developed. However, earlier fluctuations showed that natural processes had at times reduced salmon densities as much as recent commercial fisheries, the co-authors said.

"We expected to detect a signal of commercial fishing - fisheries remove a lot of the salmon, and thus salmon nitrogen, that would have otherwise ended up in the sediments. But we were surprised to find that previous returns of salmon to rivers varied just as dramatically," Rogers said.

As the paper said, "Interestingly these same fluctuations also highlight that salmon stocks have the capacity to rebuild naturally following prolonged periods with low densities, suggesting a strong resilience of salmon to natural and anthropogenic depletion processes. Indeed, total salmon production (catch plus escapements) has been relatively high in recent years for most sockeye salmon stocks in southwestern Alaska, despite a century of intense harvesting."

Other co-authors are Peter Lisi and Gordon Holtgrieve with the UW, Peter Leavitt and Lynda Bunting with University of Regina, Canada, Bruce Finney with Idaho State University, Daniel Selbie with Fisheries and Oceans Canada, Canada, Guangjie Chen with Yunnan Normal University, China, Irene Gregory-Eaves with McGill University, Canada, and Mark Lisac and Patrick Walsh with Togiak National Wildlife Refuge, Alaska.

.


Related Links
University of Washington
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Kenyan officials impound two tonnes of ivory: police
Nairobi (AFP) Jan 15, 2013
Officials in the Kenyan port city of Mombasa have impounded more than 600 pieces of ivory, weighing two tonnes, they said Tuesday, the latest in a series of seizures by Kenyan authorities. "They were labelled as decorating stones and were headed to Indonesia from Tanzania," a police source based at the port told AFP on condition of anonymity. The head of operations at the port, Gitau Git ... read more


FLORA AND FAUNA
Roscosmos Releases Report On Proton Launch Anomaly

Russia plans replacement for Soyuz rocket

Arianespace's industry leadership will continue with 12 launcher family missions planned in 2013

Arianespace addresses The Insurance Institute of London

FLORA AND FAUNA
Mars rover readies first rock drilling

Mars One announces requirements for Red Planet colonists

Opportunity Heading Toward Light-Toned Veins

Bacteria In Rio Tinto Could Be Like Those On Mars

FLORA AND FAUNA
US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

Russia designs manned lunar spacecraft

GRAIL Lunar Impact Site Named for Astronaut Sally Ride

FLORA AND FAUNA
New Horizons Gets a New Year's Workout

Halfway Between Uranus and Neptune, New Horizons Cruises On

Dwarf planet Makemake lacks atmosphere

Keck Observations Bring Weather Of Uranus Into Sharp Focus

FLORA AND FAUNA
Earth-size planets common in galaxy

NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut B

NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega

Kepler Gets a Little Help From Its Friends

FLORA AND FAUNA
NASA Engineers Resurrect And Test Mighty F-1 Engine Gas Generator

NASA's Robotic Refueling Demo Set to Jumpstart Expanded Capabilities in Space

NASA Researchers Studying Advanced Nuclear Rocket Technologies

Russia develops new rocket fuel

FLORA AND FAUNA
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

FLORA AND FAUNA
Russian astronomers discover new huge comet

Rogue asteroid a fifth bigger than thought: space agency

Herschel intercepts asteroid Apophis

Asteroid Impact Delivered Carbon To Giant Asteroid Vesta




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement