Space Travel News  
TECTONICS
Rip in crust drives undersea volcanism, says study
by Staff Writers
New York NY (SPX) Nov 16, 2016


Fresh lava from a 2006 Pacific seafloor eruption, lain over older lava. Scientists studying the eruption have determined that the main cause was basically a tear in Earth's crust. Image courtesy Dan Fornari and WHOI.

Scientists analyzing a volcanic eruption at a mid-ocean ridge under the Pacific have come up with a somewhat contrarian explanation for what initiated it. Many scientists say undersea volcanism is triggered mainly by upwelling magma that reaches a critical pressure and forces its way up. The new study says the dominant force, at least in this case, was the seafloor itself - basically that it ripped itself open, allowing the lava to spill out. The eruption took place on the East Pacific Rise, some 700 miles off Mexico.

"Mid-ocean ridges are commonly viewed as seafloor volcanoes, operating like volcanoes on land," said the study's lead author, Yen Joe Tan, a graduate student at Columbia University's Lamont-Doherty Earth Observatory. "We're saying they should actually be viewed as tears in the crust, where magma oozes out." The study appears in the journal Nature this week.

The mid-ocean ridges are mountain chains that run continuously for more than 40,000 miles along the planet's seafloors, like stitching on a baseball. From their centers, they pour out lava. This pushes the seafloor out in opposite directions from the ridges toward the continents. In many cases, the leading edge of the seafloor then dives under the land, or subducts, and is subsumed back into the deep earth. This process - the basic mechanism of plate tectonics - was defined in the 1960s and 1970s. Scientists have since debated exactly what drives ridge eruptions.

Many say magma pressure is the main factor, but it might not be the only one. A ridge might also get torn by what specialists call "plate pull" - the force exerted when the distant edge of seafloor subducts under a continent, slowly lugging the rest behind it.

Stress might also develop because eruptions build symmetrical chains of mountains on either side of the ridge axis, as lava spills down the sides. This might weaken the center through sheer force of gravity, somewhat like what happens when one slices a hot dog lengthwise, and the two sides fall apart.

In an effort to resolve the relative roles of magma and stress, Tan and his coauthors analyzed an eruption thought to have taken place in 2005-2006, along a heavily studied segment of the East Pacific Rise. A team of researchers had earlier left underwater microphones and sea-bottom seismometers at the site, which recorded the eruption.

They later retrieved the sound and seismic data, and mapped the fresh lava using underwater cameras. They also collected samples of the lava, and later analyses of it suggested that the eruption took place over seven to 10 months.

The authors of the new paper took another look after a 2015 eruption at an unconnected study site, at Axial Seamount, off the coast of Oregon. Unlike the earlier East Pacific Rise eruption, this one was studied in real time with an assortment of instruments. Among the data produced were recordings of violent popping noises that appeared related to the emergence of lava on the seafloor - possibly the result of exploding gas bubbles, or implosions of hardening lava.

In light of the Axial Seamount observations, the researchers reviewed the 2005-2006 data from the East Pacific Rise, and came up with a newly sharpened picture. Their reanalysis suggested that most of the eruption took place rapidly, not over months. Other researchers had already identified a series of conventional earthquakes of about magnitude 2 on Jan. 22, 2006, of the kind usually associated with the rupture of a rock boundary, along a 35-kilometer-long segment of the ridge.

About 15 minutes later, the seismometers started picking up clusters of lower-frequency earthquakes, of a type usually associated with rising magma. Another hour or two on, popping sounds like those heard at Axial Seamount appeared, in four separate areas along the segment, each in an area about 5 kilometers long.

The team pinned down the locations of the sounds, and when they overlaid these with the earlier map of the fresh lava, they matched. Their interpretation: the first series of earthquakes signaled the rupture of a fault overlying the magma, with little or no help from magma pressure. Then, with a path now clear, the magma ascended. Magma pressure was probably not the initial trigger for the eruptions, say the authors, because they came simultaneously from four separate places along the apparent ruptured fault.

"It's been a kind of chicken-and-egg question," said coauthor Maya Tolstoy, a marine geophysicist at Lamont-Doherty. "You have these two different forces [magma vs. tectonics] that could play a role, and it's hard to tell which triggers the eruption. Here, we can make the argument for one dominating, because we see this series of events, and then multiple magma chambers erupting at the same time."

The authors say that according to their observations, about 85 percent of the lava emerged within two days, with remnants dribbling out over the course of a week. The eruptions produced some 22 million cubic meters of seafloor - about enough to cover 13 football fields 1,000 feet deep.

Cynthia Ebinger, a professor at the University of Rochester who studies eruptions at spreading sites both on land and under the ocean, said in an email that very few seafloor eruptions have been so directly observed. The study "adds a new factor to consider," she said. "It shows that tectonic stresses can trigger large-volume intrusions and eruptions" to create new seafloor.

Michael Perfit, a professor at the University of Florida who also studies undersea eruptions, said the study "tells a remarkable story." But, he said, the authors may have overstated the relative role of tectonic stress versus magma pressure. "I think it's really got to be both," he said. He cited a 2014 geochemical study he coauthored suggesting that the magma was replenished with new material from below about 6 weeks before the eruption. This suggests pressure could have played a more substantial role, he said.

Ebinger said it remained possible that either magma pressure or tectonic forces could be "the straw that breaks the camel's back" in any specific eruption.

The paper was also coauthored by seismologist Felix Waldhauser of Lamont-Doherty and marine geophysicist William Wilcock of the University of Washington. The research was supported by the U.S. National Science Foundation.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Earth Institute at Columbia University
Tectonic Science and News






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
SLU geologists discover how a tectonic plate sank
St. Louis MO (SPX) Nov 16, 2016
In a paper published in Proceedings of the National Academy of Sciences (PNAS) Saint Louis University researchers report new information about conditions that can cause the earth's tectonic plates to sink into the earth. John Encarnacion, Ph.D., professor of earth and atmospheric sciences at SLU, and Timothy Keenan, a graduate student, are experts in tectonics and hard rock geology, and use geoc ... read more


TECTONICS
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

TECTONICS
Meteorites reveal lasting drought on Mars

Opportunity heads to next waypoint at over 27 miles on the odometer

A funnel on mars could be a place to look for life

Novel Analysis Technique Helps Solve Beagle 2 Mystery

TECTONICS
Skygazers gawp at extra bright 'supermoon'

There's an 'extra-super' Moon on the rise

November 14th's Super-Close Full Moon

China "well prepared" to launch Chang'e-5 lunar probe in 2017: top scientist

TECTONICS
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish

TECTONICS
Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

What happens to a pathogenic fungus grown in space?

TECTONICS
Airbus Safran Launchers and ESA sign confirmation of the Ariane 6 program

US revives hypersonic aerospace research

JCSAT-15 arrives in Kourou for Dec Ariane 5 launch

Aerojet Rocketdyne completes CST launch abort engine hot fire tests

TECTONICS
China launches pulsar test satellite

China's Chang'e-2 a success

Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

TECTONICS
New Study Reveals Relationships Between Chemicals Found on Comets

Greenland fossils reveal global ecosystem recovery after mass extinction

Comet 67P is younger than scientists thought

Key agencies conduct asteroid emergency planning exercise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.