Subscribe free to our newsletters via your
. Space Travel News .




ENERGY TECH
Researchers one step closer to new kind of thermoelectric 'heat engine'
by Staff Writers
Columbus OH (SPX) Jul 16, 2012


File image: Seebeck effect.

Researchers who are studying a new magnetic effect that converts heat to electricity have discovered how to amplify it a thousand times over - a first step in making the technology more practical. In the so-called spin Seebeck effect, the spin of electrons creates a current in magnetic materials, which is detected as a voltage in an adjacent metal.

Ohio State University researchers have figured out how to create a similar effect in a non-magnetic semiconductor while producing more electrical power. They've named the amplified effect the "giant spin-Seebeck" effect, and the university will license patent-pending variations of the technology.

The resulting voltages are admittedly tiny, but in this week's issue of the journal Nature, the researchers report boosting the amount of voltage produced per degree of temperature change inside the semiconductor from a few microvolts to a few millivolts - a 1,000-fold increase in voltage, producing a 1-million-fold increase in power.

Joseph Heremans, Ohio Eminent Scholar in Nanotechnology, said that his team's ultimate goal is a low-cost and efficient solid-state engine that coverts heat to electricity. These engines would have no moving parts, would not wear out, and would be infinitely reliable, he added.

"It's really a new generation of heat engine," said Heremans, professor of mechanical engineering and professor of physics at Ohio State. "In the 1700s we had steam engines, in the 1800s we had gas engines, in the 1900s we had the first thermoelectric materials, and now we're doing the same thing with magnetics."

This research could enable electronic devices that recycle some of their own waste heat into electricity. In a computer, it could enable heat-powered computation, or, inversely, it could provide cooling.

Researchers around the world are working to develop electronics that utilize the spin of electrons to read and write data. So-called "spintronics" are desirable because in principle they could store more data in less space, process data faster, and consume less power. And the spin-Seebeck effect takes the notion of spintronics a step further, by using heat to induce a flow of spin "information," called a "spin current."

Great progress has been made in understanding how the spin-Seebeck effect works, but many details are still a mystery. Though researchers around the world have been able to reproduce the spin-Seebeck effect with some success since it was discovered at Tohoku University in 2008, a unified theory is lacking. And the same holds true for the giant spin-Seebeck effect, though the Ohio State researchers have several suggestions as to what's going on.

People may be familiar with the concept of light being made of particles called photons, Heremans said. Heat, too, can be thought of the same way, and scientists have a similar-sounding name for heat particles: phonons.

The researchers think that they were able to induce a powerful stream of phonons inside the semiconductor. The phonons then smashed into the electrons and knocked them forward, while the atoms in the semiconductor made the electrons spin as they streamed through the material - like a bullet spinning in a rifle barrel.

Roberto Myers, assistant professor of materials science and engineering, said that the key to making the experiment work was the choice of materials.

The spin-Seebeck effect had previously only been seen in magnetic semiconductors and metals, but they looked to non-magnetic semiconductors instead, where there were more materials to choose from. They settled on indium antimonide, doped it with other elements, and then created a sample of the material about the size of stick of Trident gum.

Since the material was non-magnetic, they needed to create a magnetic field around it and lower the temperature to polarize the electrons.

"Those are the drawbacks - we had to do it at a low temperature, and with a high magnetic field," Myers said. "Right now, it works between 2 and 20 Kelvin, which is about the temperature of liquid helium, and with an external magnetic field of 3 Tesla, which is about the same strength as a medical MRI."

The temperature range corresponds to -456 to -423 degrees Fahrenheit.

Still, when they heated one side of the material one degree, they detected a voltage of 8 millivolts (thousandths of a volt) on the other side. That's three orders of magnitude bigger than the 5 microvolts (millionths of a volt) ever produced by researchers using the standard spin-Seebeck effect.

Heremans and his team are exploring other materials - magnetic and otherwise - to push the effect further.

Christopher Jaworski, a graduate student in mechanical engineering, performed this experiment as part of his doctoral thesis. He prepared the material with the help of the laboratory of coauthor Ezekiel Johnston-Halperin, assistant professor of physics.

.


Related Links
Ohio State University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Waste to Watts: Improving Microbial Fuel Cells
Tempe AZ (SPX) Jul 11, 2012
Some of the planet's tiniest inhabitants may help address two of society's biggest environmental challenges: how to deal with the vast quantities of organic waste produced and where to find clean, renewable energy. According to Cesar Torres and Sudeep Popat, researchers at Arizona State University's Biodesign Institute, certain kinds of bacteria are adept at converting waste into useful energy. ... read more


ENERGY TECH
SpaceX Completes Design Review of Dragon

Arianespace to launch Taranis satellite for CNES

SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

ENERGY TECH
NASA Mars images 'next best thing to being there'

Life's molecules could lie within reach of Mars Curiosity rover

Final Six-Member Crew Selected for Mars Food Mission

Opportunity Celebratres 3,000 Martian Days of Operation on the Surface of Mars!

ENERGY TECH
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

ENERGY TECH
Hubble Discovers a Fifth Moon Orbiting Pluto

Hubble telescope spots fifth moon near Pluto

New Horizons Doing Science in Its Sleep

It's a Sim: Out in Deep Space, New Horizons Practices the 2015 Pluto Encounter

ENERGY TECH
Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

ENERGY TECH
Cella Energy Signs Fuel Source Deal with Kennedy Space Center

HI-C Sounding Rocket Mission Has Finest Mirrors Ever Made

XCOR Aerospace And Midland Development Corp Announce New Commercial Spaceflight Research Center

Rocketdyne Completes CCDev 2 Hot Fire Testing on Thruster for NASA Commercial Crew Program

ENERGY TECH
Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

China set to launch bigger space program

ENERGY TECH
Planetary Resources Announces Agreement with Virgin Galactic for Payload Services

Explained: Near-miss asteroids

The B612 Foundation Announces The First Privately Funded Deep Space Mission

Ex-NASA astronauts aim to launch asteroid tracker




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement