. Space Travel News .




.
NANO TECH
Researchers Discover Material with Graphene-Like Properties
by Sara Schmiedel
Dresden, Germany (SPX) Oct 18, 2011

The crystal structure of SrMnBi2 resembles iron pnictides (green: bismuth; blue: strontium; red: manganese). Picture: Marc Uhlarz/HZDR

After the Nobel Prize in Physics was awarded to two scientists in 2010 who had studied the material graphene, this substance has received a lot of attention. Together with colleagues from Korea, Dr. Frederik Wolff-Fabris from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now developed and analyzed a material which possesses physical properties similar to graphene.

Its structure also resembles iron pnictides, i.e. high temperature superconductors, and it definitely has a promising future: Due to the position of the individual components in the Periodic Table of Elements, some of the atoms can simply be replaced by foreign atoms. This creates new materials which can be superconductive, magnetic, or behave like topological insulators.

Earlier this year, Dr. Jun Sung Kim came from South Korea to use HZDR's Dresden High Magnetic Field Laboratory to analyze a number of material samples in high magnetic fields.

For the first time ever, he and his colleague from Dresden, Dr. Frederik Wolff-Fabris, studied the metal SrMnBi2 and observed something amazing: The material consisting of the three elements strontium, manganese, and bismuth behaves physically similar to the "magical material" graphene.

Due to its composition and the position of its elements in the Periodic Table, SrMnBi2 permits simple and uncomplicated doping with foreign atoms. Inserting small amounts of foreign atoms alters the physical properties of a material. This might result in the creation of new magnets or superconductors.

SrMnBi2 is currently also in the focus of other research groups; but only the use of ultra-high magnetic fields, such as those generated in the Dresden High Magnetic Field Laboratory, permitted these precise results and, thus, a publication in the scientific journal Physical Review Letters.

Later this year, Dr. Jun Sung Kim will return to Dresden to conduct additional experiments on SrMnBi2 with Dr. Wolff-Fabris.

The original paper was published under the title "Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2" by Joonbum Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim in Physical Review Letters, Vol. 107, No. 12 (DOI: 10.1103/PhysRevLett.107.126402), and can be downloaded here.

Related Links
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
UBC researchers invent tiny artificial muscles with the strength, flexibility of elephant trunk
Vancouver, Canada (SPX) Oct 18, 2011
An international team of researchers has invented new artificial muscles strong enough to rotate objects a thousand times their own weight, but with the same flexibility of an elephant's trunk or octopus limbs. In a paper published online today on Science Express, the scientists and engineers from the University of British Columbia, the University of Wollongong in Australia, the University ... read more


NANO TECH
Huge stakes riding on maiden Soyuz launch from Kourou

Virgin Galactic to give NASA a ride

Indian-French satellite put into orbit

Chinese rocket sends French telecom satellite into space

NANO TECH
Russia invited to join Mars missions

Mars Express observes clusters of recent craters in Ares Vallis

Wet and Mild: Caltech Researchers Take the Temperature of Mars' Past

New Mystery On Mars' Forgotten Plains

NANO TECH
Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

NASA Invites Students to Name Moon-Bound Spacecraft

NANO TECH
Dwarf planet may not be bigger than Pluto

Series of bumps sent Uranus into its sideways spin

Mission to Mysterious Uranus

Spinning hourglass object may be the first of many to be discovered in the Kuiper belt

NANO TECH
UChicago launches search for distant worlds

Astronomers Find Elusive Planets in Decade-Old Hubble Data

University of Texas-led Team Discovers Unusual Multi-Planet System with NASA's Kepler Spacecraft

Heavy Metal Stars Produce Earth-Like Planets

NANO TECH
Caltech Event Marks 75th Anniversary of JPL Rocket Tests

Russia puts new Rus-M carrier rocket project on hold

Russia to abandon rocket booster work

Pee power: Urine-loving bug churns out space fuel

NANO TECH
China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

NANO TECH
NASA's Dawn Science Team Presents Early Science Results

Amateur skywatchers help space hazards team

New View of Vesta Mountain From NASA's Dawn Mission

Almahata Sitta Meteorites Could Come From Triple Asteroid Mash-Up


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement