Space Travel News  
Researchers Analyze Material With Colossal Ionic Conductivity

The molecular model of the ion-conducting material shows that numerous vacancies at the interface between the two layers create an open pathway through which ions can travel.
by Staff Writers
Oak Ridge TN (SPX) Aug 08, 2008
A new material characterized at the Department of Energy's Oak Ridge National Laboratory could open a pathway toward more efficient fuel cells.

The material, a super-lattice developed by researchers in Spain, improves ionic conductivity near room temperature by a factor of almost 100 million, representing "a colossal increase in ionic conduction properties," said Maria Varela of ORNL's Materials Science and Technology Division, who characterized the material's structure with senior researcher Stephen Pennycook.

The analysis was done with ORNL's 300 kilovolt Z-contrast scanning transmission electron microscope, which can achieve aberration-corrected resolutions near 0.6 angstrom, until recently a world record. The direct images show the crystal structure that accounts for the material's conductivity.

"It is amazing," Varela said. "We can see the strained, yet still ordered, interface structure that opens up a wide pathway for ions to be conducted."

Solid oxide fuel cell technology requires ion-conducting materials -- solid electrolytes -- that allow oxygen ions to travel from cathode to anode.

However, existing materials have not provided atom-scale voids large enough to easily accommodate the path of a conducted ion, which is much bigger than, for example, an electron.

"The new layered material solves this problem by combining two materials with very different crystal structures. The mismatch triggers a distortion of the atomic arrangement at their interface and creates a pathway through which ions can easily travel," Varela said.

Other fuel cell materials force ions to travel through tight pathways with few spaces for the ions to occupy, slowing their progress. Rather than forcing the ions to jump from hole to hole, the new material has "lots of vacant spaces to be occupied," said Varela, so the ions can travel much more quickly.

Unlike previous fuel cell materials, which have to achieve high temperatures to conduct ions, the new material maintains ionic conductivity near room temperatures. High temperatures have been a major roadblock for developers of fuel cell technology.

The research team with Spain's Universidad Complutense de Madrid and Universidad Politecnica de Madrid produced the material and observed its outstanding conductivity properties, but the structural characteristics that enable the material to conduct ions so well were not known until the material was put under the ultra-high resolution microscopes at ORNL.

The paper, a collaboration between researchers at the Universities of Madrid and at ORNL, was published in Science.

Related Links
Oak Ridge National Laboratory
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Argonne Scientists Discover New Class Of Glassy Material
Argonne IL (SPX) Aug 05, 2008
Scientists at U.S. Department of Energy's Argonne National Laboratory are dealing with an entirely new type of frustration, but it's not stressing them out.







  • Falcon 1 Flight 3 Mission Summary
  • Rocket Racing League Conducts Rocket Racer Flights
  • Boeing Team To Design New Spacecraft Power Generation System
  • Russia unveils new spacecraft design

  • Soyuz glitch remains a mystery: NASA chief
  • Russian Launch Of Satellite On Converted Satan ICBM Postponed
  • Russia Puts Off Launch Of Inmarsat Satellite Until August 19
  • Russia Launching Thai Earth Remote-Sensing Satellite

  • LockMart External Tank Is Pacing Item For Hubble Space Telescope Launch
  • LockMart Announces Workforce Reductions On Shuttle External Tank Program
  • External Tank ET-128 Sets New Standard During Recent Shuttle Mission
  • NASA Sets Launch Dates For Remaining Space Shuttle Missions

  • ISS Crew Inspired By Vision And Dreams Of Jules Verne
  • Space Station A Test-Bed For Future Space Exploration
  • Space chiefs ponder ISS transport problem, post-2015 future
  • Two Russian cosmonauts begin new space walk

  • Environmental Tectonics's NASTAR Center Receives Award
  • NASA Awards Space Radiobiology Research Grants
  • Inspire Interns Help Design Next-Gen Space Fleet
  • Obama Promises A Better NASA

  • China's Space Ambitions
  • Rocket For China's Manned Space Mission At Launch Center
  • China To Release 700 Hours Of Chang'e-1 Data
  • China Aims For World-Class Space Industry In Seven Years

  • Robo-relationships are virtually assured: British experts
  • Europe And Japan Join Forces To Map Out Future Of Intelligent Robots
  • NASA Robots Perform Well During Arctic Ice Deployment Testing
  • Eight Teams Taking Up ESA's Lunar Robotics Challenge

  • With Batteries Charged, Spirit Is Ready For More Science
  • Martian Clays Tell Story Of A Wet Past
  • Perchlorate salts: a major find on Mars
  • Martian Soil May Contain Toxic Compounds Harmful To Life

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement