Subscribe free to our newsletters via your
. Space Travel News .




TIME AND SPACE
Removing complexity layers from the universe's creation
by Staff Writers
Heidelberg, Germany (SPX) Jul 30, 2013


File image: the early universe.

Complicated statistical behaviour observed in complex systems such as early universe can often be understood if it is broken down into simpler ones. Two physicists, Petr Jizba (currently affiliated with the Czech Technical University in Prague), and Fabio Scardigli (now working at Kyoto University in Japan), have just published results in EPJ C pertaining to theoretical predictions of such cosmological systems' dynamics.

Their work focuses on complex dynamical systems whose statistical behaviour can be explained in terms of a superposition of simpler underlying dynamics. They found that the combination of two cornerstones of contemporary physics-namely Einstein's special relativity and quantum-mechanical dynamics-is mathematically identical to a complex dynamical system described by two interlocked processes operating at different energy scales.

The combined dynamic obeys Einstein's special relativity even though neither of the two underlying dynamics does. This implies that Einstein's special relativity might well be an emergent concept and suggests that it would be worthwhile to further develop Einstein's insights to take into account the quantum structure of space and time.

To model the double process in question, the authors consider quantum mechanical dynamics in a background space consisting of a number of small crystal-like domains varying in size and composition, known as polycrystalline space.

There, particles exhibit an analogous motion to pollen grains in water, referred to as Brownian motion. The observed relativistic dynamics then comes solely from a particular grain distribution in the polycrystalline space. In the cosmological context such distribution might form during the early universe's formation.

Finally, the authors' new interpretation focuses on the interaction of a quantum particle with gravity, that, according to Einstein's general relativity, can be understood as propagation in curved space-time. The non-existence of the relativistic dynamics on the basic level of the description leads to a natural mechanism for the formation of asymmetry between particles and anti-particles.

When coupled with an inflationary cosmology, the authors' approach predicts that a charge asymmetry should have been produced at ultra-minute fractions of seconds after the Big Bang. This prediction is in agreement with constraints born out of recent cosmological observations.

P. Jizba and F. Scardigli (2013), Special Relativity Induced by Granular Space, European Physical Journal C 73: 2491, DOI 10.1140/epjc/s10052-013-2491-x

.


Related Links
Springer
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
The limits to galactic growth
Heidelberg, German (SPX) Jul 26, 2013
Astronomers have long assumed that when a galaxy produces too many stars too quickly, it greatly reduces its capacity for producing stars in the future. Now, a group of astronomers that includes Fabian Walter from the Max Planck Institute for Astronomy were able to obtain the first detailed images of this type of self-limiting galactic behaviour: an outflow of molecular gas, the raw material nee ... read more


TIME AND SPACE
The second satellite arrives for Arianespace's upcoming heavy-lift Ariane 5 launch

Arianespace's heavy-lift Ariane 5 mission orbits key satellite payloads for Europe and India

Three Soyuz launchers are at the Spaceport for Arianespace's upcoming medium-lift missions from French Guiana

Flawless launch of Alphasat, Europe's largest and most sophisticated telecom satellite

TIME AND SPACE
Mars Rover Opportunity Nears Solander Point

Curiosity Mars Rover Gleams in View from Orbiter

Mars Curiosity sets one-day driving distance record

Scientists establish age of Mars meteorites found on Earth

TIME AND SPACE
Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

First-ever lunar south pole mission could be attempted by 2016

TIME AND SPACE
SciTechTalk: Grab your erasers, there are more moons than we thought

NASA Hubble Finds New Neptune Moon

NASA finds new moon on Neptune

A Giant Moon for the Ninth Planet

TIME AND SPACE
Chandra Sees Eclipsing Planet in X-rays for First Time

A warmer planetary haven around cool stars, as ice warms rather than cools

Solar system's youth gives clues to planet search

Snow falling around infant solar system

TIME AND SPACE
Test confirms NASA manned capsule can land even if one parachute lost

N. Korea halts work at long-range rocket site: website

Angular rate sensors at crashed Proton-M rocket were installed 'upside down'

Upside down sensor behind proton rocket explosion

TIME AND SPACE
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

TIME AND SPACE
NASA's Hubble: Galaxies, Comets, and Stars! Oh My!

NASA's Wise Finds Mysterious Centaurs May Be Comets

Spitzer Observes Gas Emission From Comet ISON

Gas, dust observed streaming from 'soda-pop' comet approaching Earth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement