Space Travel News  
STELLAR CHEMISTRY
Remnant of ancient globular cluster that's 'the last of its kind'
by Staff Writers
Pasadena CA (SPX) Jul 30, 2020

An artist's impression of the thin stream of stars torn from the Phoenix globular cluster, wrapping around our Milky Way (left). For the study, the astronomers targeted bright Red Giant stars, to measure the chemical composition of the disrupted Phoenix globular cluster (right).

A team of astronomers including Carnegie's Ting Li and Alexander Ji discovered a stellar stream composed of the remnants of an ancient globular cluster that was torn apart by the Milky Way's gravity 2 billion years ago, when Earth's most-complex lifeforms were single-celled organisms. This surprising finding, published in Nature, upends conventional wisdom about how these celestial objects form.

Imagine a sphere made up of a million stars bound by gravity and orbiting a galactic core. That's a globular cluster. The Milky Way is home to about 150 of them, which form a tenuous halo that envelops our galaxy.

But the globular cluster that spawned this newly discovered stellar stream had a lifecycle that was very different from the globular clusters we see today.

"This is stellar archaeology, uncovering the remnants of something ancient, swept along in a more-recent phenomenon," explained Ji.

Using the Anglo-Australian Telescope, the stream was revealed by S5, the Southern Stellar Stream Spectroscopic Survey Collaboration. Led by Li, the initiative aims to map the motion and chemistry of stellar streams in the Southern Hemisphere.

In this study, the collaborative focused on a stream of stars in the Phoenix constellation.

"The globular cluster remnants that make up the Phoenix Stream were disrupted many billion years ago, but luckily retain the memory of its formation in the very early universe, which we can read from the chemical composition of its stars," said Li

The team measured the abundances of heavier elements - what astronomers call a star's metallicity.

A star's makeup mirrors that of the cloud of galactic gas from which it is born. The more prior generations of stars have seeded this material with heavy elements that they produced during their lifetimes, the more enriched, or metallic, the stars are said to be. Therefore, a very ancient, primitive star, will have almost no heavy elements.

"We were really surprised to find that the Phoenix Stream is distinctly different to all of the other globular clusters in the Milky Way," explained lead author Zhen Wan of the University of Sydney. "Even though the cluster was destroyed billions of years ago, we can still tell it formed in the early universe."

Because other known globular clusters are enriched by the presence of heavy elements forged by stellar earlier generations, it was theorized that there was a minimum abundance of heavier elements required for a globular cluster to form.

But the Phoenix Stream progenitor is well below this predicted minimum metallicity, posing a significant problem for previous ideas about how globular clusters are born. "One possible explanation is that the Phoenix Stream represents the last of its kind, the remnant of a population of globular clusters that was born in radically different environments to those we see today," Li said.

The researchers proposed that these no-longer-with-us globular clusters were steadily depleted by the Milky Way's gravitational forces, which tore them to pieces. The remnants of other ancient globular clusters may also live on as faint streams that can still be discovered before they dissipate over time.

"There is plenty of theoretical work left to do, and there are now many new questions for us to explore about how galaxies and globular clusters form," said co-author Geraint Lewis, also of the University of Sydney.

Research paper


Related Links
Carnegie Institution For Science
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
How galaxies die and the quenching of star formation
Santa Cruz CA (SPX) Jul 17, 2020
Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies. Although many theories have been proposed to explain this process, known as "quenching," there is still no consensus on a satisfactory model. Now, an international team led by Sandra Faber, professor emerita of astronomy and astrophysics at UC Santa Cruz, has proposed a new model that successfully explains a wide range of observations about galaxy structure, supermas ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
STELLAR CHEMISTRY
After intense testing, Mars helicopter Ingenuity ready to fly

ExoMars finds new gas signatures in the martian atmosphere

Hong Kong PolyU contributes key ops camera to China's Mars mission

China's probe radar to explore internal structure of Mars

STELLAR CHEMISTRY
Russian Cosmonauts Could Be Going to the Moon Without a Super-Heavy Launch Vehicle

Aerojet Rocketdyne completes its propulsion for NASA's Artemis II mission

Study reveals composition of gel-like lunar substance

Russia's Trailblazing Lunar Lander Mission to be Launch-Tested With US Equipment

STELLAR CHEMISTRY
NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

STELLAR CHEMISTRY
As if space wasn't dangerous enough

Scientists revive microbes from 100 million years ago

Exoplanet rediscovery is step toward finding habitable planets

First ever image of a multi-planet system around a sun-like star captured by ESO telescope

STELLAR CHEMISTRY
NASA Announces Astronauts to Fly on SpaceX Crew-2 Mission to Space Station

Aerojet Rocketdyne achieves another milestone on DARPA Opfires Program

Northrop Grumman delivers three GEM 63 rocket motors for Atlas V

South Korea given green light for solid-propellant rockets

STELLAR CHEMISTRY
China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

STELLAR CHEMISTRY
New technique enables mineral ID of precious Antarctic micrometeorites

An origin story for a family of oddball meteorites

Carbon found in comet ATLAS helps reveal ages of other comets

Earth, moon were bombarded by asteroid shower 800 million years ago









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.