![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
New Haven CT (SPX) Sep 23, 2008 Yale researchers have shown that the origin and evolution of the placenta and uterus in mammals is associated with evolutionary changes in a single regulatory protein, according to a report in Proceedings of the National Academy of Sciences. "Many past studies have shown that genes are regulated and altered by changes within their own structures. This is the first work suggesting that the evolution of transcription factors - separate regulatory proteins - may play an active role in the origin and evolution of structural innovations like the placenta and uterus," said senior author Gunter Wagner, the Alison Richard Professor of Ecology and Evolutionary Biology at Yale. Pregnancy is a biologically unusual situation where one organism lives and develops inside another that is genetically different. Ordinarily, the immune system identifies and destroys the dissimilar tissue as if it were a parasite. But in some early mammals, changes 'turned down' the immune system, allowing the developing embryo to grow and thrive unchallenged by the maternal immune response. With the evolution of the uterus and placenta, it became possible for mammals to protect their growing young and to ensure they were not exposed to an unpredictable environment, like their egg-laying relatives. This study identified one of the genetic switches that tempered the immune system and allowed formation of the placenta and internal development of young. By analyzing DNA from many species of mammals, including resurrecting genes from the extinct ancestors of mammals, the researchers found that a crucial regulatory link in the evolution of pregnancy involved the altered function of a transcription factor protein, HoxA-11. The specific change they found in HoxA-11 is present in all known placental mammals - from elephants, the most primitive lineage with a placenta, to humans - but does not exist in marsupials, like opossums or wallabies, where there is a brief and rudimentary pregnancy followed by development of the offspring outside the mother, or in egg-laying mammals like the platypus. The textbook story is that regulatory proteins, like HoxA-11, are ancient, universal and unchanging tools, and that new functions arise by using an existing tool from the gene regulatory 'toolbox' in a new or different place. According to Yale graduate student Vincent Lynch, lead author of the study, "We are writing a different chapter. In this case the function of a major regulatory tool was altered - it is like we found a redesigned hammer." Related Links Yale University Darwin Today At TerraDaily.com
![]() ![]() Scientists often have a reputation for working in stuffy laboratories, cut off from the world around them. But this certainly isn't the case at the Centre for Geobiology, University of Bergen, Norway. The Centre has had two summer cruises thus far where researchers embark on a voyage to study conditions on the ocean floor. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |