Subscribe free to our newsletters via your
. Space Travel News .




WATER WORLD
'Red tide' species is deadlier than first thought
by Staff Writers
Storrs CT (SPX) Jul 26, 2012


File image.

A University of Connecticut researcher and his team have discovered that a species of tiny aquatic organism prominent in harmful algal blooms sometimes called "red tide" is even deadlier than first thought, with potential consequences for entire marine food chains. Professor Hans Dam and his research group in the school's Department of Marine Sciences have discovered that the plankton species Alexandrium tamarense contains not one but two different types of toxins, one that's deadly to large organisms and one that's deadly to small predators.

"If it's killing multicellular animals with one toxin and small protists with another, it could be the killer of the ocean world," he says.

Dam speculates that this ability to harm both large and small oceanic predators could lead to disruptions in the marine food web during large Alexandrium blooms, like the red tide that occurred along the Northeast coast in 2005, severely affecting the Cape Cod area.

"These small predators that are being affected by the reactive oxygen species are the things that typically eat large amounts of the algae and keep them from growing like crazy," says Dam. "This brings up a whole new line of inquiry for us: What will actually control these algae in the future?"

In small numbers, Alexandrium are virtually harmless to humans, says Dam. But when they're eaten by other clams, mussels or other microorganisms - which are then eaten by small crustaceans, which are in turn eaten by larger crustaceans or fish - the toxins can build up in large amounts. So in some parts of the world, eating contaminated shellfish, such as lobsters, clams and fish, has led to illness or death.

However, says Dam, that toxin only affects animals that have central nervous systems.

"This toxin blocks sodium channels in anything that has a well-developed nervous system," he says. "But most of the organisms in the ocean are not those kinds of organisms. They're single-celled, similar to the algae themselves, and they don't have a well-developed nervous system."

Scientists had begun to notice that even though Alexandrium's toxin isn't supposed to affect single-celled animals, when the algae was in the vicinity of some of its one-celled predators, some of those predators got sick and died. Dam's post-doctoral researcher Hayley Flores showed in laboratory experiments that in fact the alga produces a different toxin, called a reactive oxygen species, that kills their predators by popping their cell membrane.

"If you only have one cell, lysing your cell membrane is all it takes to kill you," says Dam. "This new mechanism of toxicity, combined with the other, is pretty evil."

Dam notes that although harmful algal blooms have been linked to human activities, such as pollution runoff from rivers, there are many different factors that could affect the blooms, and scientists still aren't sure exactly how they begin. He speculates that the algae may have become more toxic over time, which has led to their proliferation.

His group will next try to understand how the alga produces the reactive oxygen species and whether it also affects animals multicellular animals. He's also working with researchers at the University of Los Lagos in Chile to understand how Alexandrium may affect important commercial species such as salmon and king crab "The amazing thing is, when you look at these algae under a microscope, they're so beautiful - but they're so deadly," says Dam. "We call them the beautiful assassins."

.


Related Links
University of Connecticut
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Scientists confirm existence of vitamin 'deserts' in the ocean
Los Angeles CA (SPX) Jul 26, 2012
Using a newly developed analytical technique, a team led by scientists at USC was the first to identify long-hypothesized vitamin B deficient zones in the ocean. "This is another twist to what limits life in the ocean," said Sergio Sanudo-Wilhelmy, professor of biological and earth sciences at the USC Dornsife College of Letters, Arts and Sciences and lead author on a paper about the vitamin-dep ... read more


WATER WORLD
Initial build-up is underway for Arianespace's fifth Ariane 5 launch in 2012

U.S. Bank Helps Fuel Future Space Flight as Bank behind SpaceX

HYLAS 2 and Intelsat 20 are prepared for Arianespace's next Ariane 5 mission

Degradation Free Spectrometers Sounding Rocket

WATER WORLD
Mystery of missing Mars signals solved

Slow-Going at Cape York for Opportunity

ExoMars program gathers strength

Opportunity Runs the First Martian Marathon

WATER WORLD
Another Small Step for Mankind

Russia starts building Moon spaceship, eyes Lunar base

Plans to revisit Moon impeded by financial difficulties

Russia says no manned moon shots till 2018

WATER WORLD
Hubble Discovers a Fifth Moon Orbiting Pluto

Hubble telescope spots fifth moon near Pluto

New Horizons Doing Science in Its Sleep

It's a Sim: Out in Deep Space, New Horizons Practices the 2015 Pluto Encounter

WATER WORLD
UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

WATER WORLD
NASA Tests Hypersonic Inflatable Heat Shield

United Technologies to sell Rocketdyne unit to GenCorp

Taiwan to get new powerful rocket system: report

NASA Selects Space Launch System Advanced Booster Proposals

WATER WORLD
Looking Forward to Shenzhou 10

Argentina, China ink space cooperation deal

Looking Forward to Shenzhou 10

Astronauts in good shape after return

WATER WORLD
Planetary Resources Announces Agreement with Virgin Galactic for Payload Services

Explained: Near-miss asteroids

The B612 Foundation Announces The First Privately Funded Deep Space Mission

Ex-NASA astronauts aim to launch asteroid tracker




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement