Space Travel News  
BIO FUEL
Recycling CO2 to fuel a carbon-neutral future
by Staff Writers
Thuwal, Saudi Arabia (SPX) Nov 12, 2021

The conversion of captured CO2 into fuels and other valuable hydrocarbons could enable a sustainable nonfossil-fuel-based economy.

Multifunctional catalysts that transform captured carbon dioxide (CO2) into fuels and other valuable petrochemicals have been developed at KAUST and are set to enable a sustainable greener economy independent of conventional fossil fuels. The catalysts could help reverse the ever-increasing release of CO2 by preventing new emissions without requiring a radical overhaul of existing infrastructure, says Jorge Gascon, who led the research.

CO2 is a key contributor to global warming that can also serve as a raw material for useful hydrocarbons. However, its high chemical stability makes it quite challenging to transform it into something more useful.

Several strategies are available to transform CO2 into various hydrocarbons using conventional heterogeneous catalysts. However, these catalysts are severely limited in their ability to tune the product distribution according to the target application, explains Ph.D. student Abhay Dokania.

Gascon's team devised an approach that exploits several catalysts acting together in a concerted fashion. The catalysts combine a metal-based catalyst with acidic zeolites - well-ordered microporous catalytic materials - to directly transform CO2 into multiple hydrocarbons, such as light olefins, aromatics and paraffins.

A mixture of a methanol-producing indium-cobalt catalyst with a zinc-modified zeolite that catalyzes methanol-to-hydrocarbon reactions yielded gasoline-grade isoparaffins, such as isobutane and isooctane, with a record selectivity of 85 percent. These high-octane-number hydrocarbons are sought after for their anti-knock performance and fuel efficiency but had been previously ignored as target products. The high catalyst selectivity is consistent with the zeolite pore structure and propensity to produce branched hydrocarbons.

"We did not start this project from scratch," says research engineer Adrian Ramirez Galilea. "Yet, we were very positively surprised to demonstrate such a high selectivity in the isoparaffin fraction. There is still work ahead but we believe that we are on the right track."

"Through exhaustive spectroscopic detective work, the team unveiled unusual zinc clusters inside the zeolites, which can help determine the precise role of each catalyst component during the reaction and thus optimize the catalysts," Dokania says.

Propane is an essential commodity with a growing market share but its production from CO2 has been overlooked. Together with a team of leading European universities, the KAUST researchers synthesized propane using a palladium-zinc-based catalyst that forms methanol and a zeolite with high selectivity toward three-carbon compounds.

The catalytic system displayed a selectivity exceeding 50 percent toward propane, with a CO2 conversion nearing 40 percent and a CO selectivity of only 25 percent. "We attribute these results to the intimate contact between catalyst components," Ramirez says. This shifts the overall CO2/methanol/CO equilibrium to maximize how much CO2 is converted while minimizing how much CO is formed. The palladium component also boosted the paraffin selectivity to 99.9 percent.

Multifunctional catalysts are expected to enhance control over the range of hydrocarbon products and generate petrochemicals that are usually inaccessible. However, further performance enhancements hinge on being able to better understand the chemistry at play, especially the role of the zeolite in the overall reaction mechanism. The researchers combined an iron-based hydrogenation catalyst with eight different zeolites and identified the zeolite-trapped organic compounds to shed light on zeolite reactivity.

Despite a complex reaction mechanism, the team classified all the zeolites into just four distinct groups in terms of selectivity: two groups that form light olefins and long olefinic hydrocarbons, and two groups that produce paraffins and aromatic compounds. "Therefore, targeting a specific product from CO2 could be as easy as selecting the adequate zeolite in the multifunctional system," Ramirez says.

The researchers are now optimizing their multifunctional catalysts to get closer to a circular carbon economy, an initiative adopted at KAUST to support carbon emissions to be reduced, reused, recycled and removed.

"We have produced hydrocarbons that fall in the gasoline fuel range but require major additional processing before becoming usable. Thus, our next step is to apply what we have learned to directly produce drop-in fuels from CO2, which could be used without any additional processing," Dokania says.

Research Report: "Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis"


Related Links
King Abdullah University of Science and Technology
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Converting methane to methanol - with and without water
Upton, NY (SPX) Nov 11, 2021
Chemists have been searching for efficient catalysts to convert methane-a major component of abundant natural gas-into methanol, an easily transported liquid fuel and building block for making other valuable chemicals. Adding water to the reaction can address certain challenges, but it also complicates the process. Now a team at the U.S. Department of Energy's Brookhaven National Laboratory has identified a new approach using a common industrial catalyst that can complete the conversion effectively both ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
China's Mars orbiter enters remote-sensing orbit

Sols 3292-3293: Celebrating Zechstein with a Science Feast

Sols 3289-3291: Go For Drilling on Zechstein!

Flight #15 - Start of the Return Journey

BIO FUEL
NASA outlines challenges, progress for Artemis Moon Missions

NASA pushes back crewed Moon landing to 2025 or later

SIRIUS-21 to simulate flight to Moon starts in Moscow

NASA Statement on Artemis Lunar Lander Court Decision

BIO FUEL
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens

BIO FUEL
Tread lightly: 'Eggshell planets' possible around other stars

Major endorsement for new space mission to find 'Earth 2.0'

To find life on other planets, NASA rocket team looks to the stars

Tidying up planetary nurseries

BIO FUEL
Crew Dragon Endeavour recovered after a successful splashdown

SwRI, UTSA to study hypersonic separation events with $1.5 million grant

New agreement between Virgin Orbit and ANA Holdings sets the stage for 20 Launcherone flights from Japan

ISS astronauts return to Earth in SpaceX craft after 6-month mission

BIO FUEL
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

BIO FUEL
NASA plans crashing spacecraft into asteroid to study Earth-impact defense

Laboratory will illuminate formation, composition, activity of comets

NASA to deflect asteroid in test of 'planetary defense'

Vast patches of glassy rock in Chilean desert likely created by ancient exploding comet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.