Space Travel News  
STELLAR CHEMISTRY
Reconciling dwarf galaxies with dark matter
by Staff Writers
Pasadena, CA (SPX) Sep 09, 2016


Astronomers have developed a number of theories for why we haven't found more, but none of them could account for both the paucity of dwarf galaxies and their properties, including their mass, size, and density.

Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf galaxies surround our own Milky Way, there seem to be far too few of them compared with standard cosmological models, which raises a lot of questions about the nature of dark matter and its role in galaxy formation.

New theoretical modeling work from Andrew Wetzel, who holds a joint fellowship between Carnegie and Caltech, offers the most accurate predictions to date about the dwarf galaxies in the Milky Way's neighborhood. Wetzel achieved this by running the highest-resolution and most-detailed simulation ever of a galaxy like our Milky Way. His findings, published by The Astrophysical Journal Letters, help to resolve longstanding debates about how these dwarf galaxies formed.

One of the biggest mysteries of dwarf galaxies has to do with dark matter, which is why scientists are so fascinated by them.

"Dwarf galaxies are at the nexus of dark matter science," Wetzel said.

Dark matter makes up a quarter of our universe. It exerts a gravitational pull, but doesn't seem to interact with regular matter--like atoms, stars, and us--in any other way. We know it exists because of the gravitational effect it has on stars and gas and dust.

This effect is why it is key to understanding galaxy formation. Without dark matter, galaxies could not have formed in our universe as they did. There just isn't enough gravity to hold them together without it.

The role of dark matter in the formation of dwarf galaxies has remained a mystery. The standard cosmological model has told us that, because of dark matter, there should be many more dwarf galaxies out there, surrounding our own Milky Way, than we have found.

Astronomers have developed a number of theories for why we haven't found more, but none of them could account for both the paucity of dwarf galaxies and their properties, including their mass, size, and density.

As observation techniques have improved, more dwarf galaxies have been spotted orbiting the Milky Way. But still not enough to align with predictions based on standard cosmological models.

So scientists have been honing their simulation techniques in order to bring theoretical modeling predictions and observations into better agreement. In particular, Wetzel and his collaborators worked on carefully modeling the complex physics of stellar evolution, including how supernovae--the fantastic explosions that punctuate the death of massive stars--affect their host galaxy.

With these advances, Wetzel ran the most-detailed simulation of a galaxy like our Milky Way. Excitingly, his model resulted in a population of dwarf galaxies that is similar to what astronomers observe around us.

As Wetzel explained: "By improving how we modeled the physics of stars, this new simulation offered a clear theoretical demonstration that we can, indeed, understand the dwarf galaxies we've observed around the Milky Way. Our results thus reconcile our understanding of dark matter's role in the universe with observations of dwarf galaxies in the Milky Way's neighborhood."

Despite having run the highest-resolution simulation to date, Wetzel continues to push forward, and he is in the process of running an even higher-resolution, more-sophisticated simulation that will allow him to model the very faintest dwarf galaxies around the Milky Way.

"This mass range gets interesting, because these 'ultra-faint' dwarf galaxies are so faint that we do not yet have a complete observational census of how many exist around the Milky Way. With this next simulation, we can start to predict how many there should be for observers to find," he added.

The co-authors on Wetzel's paper are: Philip Hopkins of Caltech, Ji-Hoon Kim of Stanford University, Claude-Andre Faucher-Giguere of Northwestern University, Dusan Keres of University of California San Diego, and Eliot Quataert of University of California Berkeley.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Institution for Science
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Massive Holes 'Punched' Through a Trail of Stars Likely Caused by Dark Matter
Cambridge UK (SPX) Sep 08, 2016
Researchers have detected two massive holes which have been 'punched' through a stream of stars just outside the Milky Way, and found that they were likely caused by clumps of dark matter, the invisible substance which holds galaxies together and makes up a quarter of all matter and energy in the universe. The scientists, from the University of Cambridge, found the holes by studying the di ... read more


STELLAR CHEMISTRY
What Happened to Sea Launch

SpaceX scours data to try to pin down cause rocket explosion on launch pad

India To Launch 5 Satellites In September

With operational acceptance complete, Western Range is ready for launch

STELLAR CHEMISTRY
Opportunity departs Marathon Valley to head deeper into Endeavour Crater

Mars Rover Views Spectacular Layered Rock Formations

Storm Reduces Available Solar Energy on Opportunity

NASA Approves 2018 Launch of Mars InSight Mission

STELLAR CHEMISTRY
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

STELLAR CHEMISTRY
Scientists discover what extraordinary compounds may be hidden inside Jupiter and Neptune

New Horizons Spies a Kuiper Belt Companion

Pluto's Methane Snowcaps on the Edge of Darkness

Hunt For Ninth Planet Reveals New Extremely Distant Solar System Objects

STELLAR CHEMISTRY
New light on the complex nature of 'hot Jupiter' atmospheres

Discovery one-ups Tatooine, finds twin stars hosting three giant exoplanets

Could Proxima Centauri b Really Be Habitable

Rocky planet found orbiting habitable zone of nearest star

STELLAR CHEMISTRY
Amazon's chief Jeff Bezos unveils new rocket design

SpaceX appeals for help in probe of rocket blast

NASA Tests New Insulation for SLS Rocket

Orion Jettison Motor Fires to Ensure Crew Safety for the Journey to Mars

STELLAR CHEMISTRY
China's second space lab Tiangong-2 to be launched

Tiangong 2 is coming soon, real soon

Vigil for Tiangong 2

Kuang-Chi near space test flight set for 2016

STELLAR CHEMISTRY
Rosetta catches dusty organics

Asteroid Mission Will Carry Student X-Ray Experiment

Small asteroid flew safely past earth this week

NASA launches first asteroid dust-retrieval mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.