Space Travel News  
TIME AND SPACE
Rare Particles Produced At The Large Hadron Collider At CERN Observed

File image.
by Staff Writers
Syracuse, NY (SPX) Mar 29, 2011
Shortly after experiments on the Large Hadron Collider (LHC) at the CERN laboratory near Geneva, Switzerland began yielding scientific data last fall, a group of scientists led by a Syracuse University physicist became the first to observe the decays of a rare particle that was present right after the Big Bang. By studying this particle, scientists hope to solve the mystery of why the universe evolved with more matter than antimatter.

Led by Sheldon Stone, a physicist in SU's College of Arts and Sciences, the scientists observed the decay of a special type of B meson, which are created when protons traveling at nearly the speed of light smash into each other.

The work is part of two studies published in the March 28 issue of Physics Letters B. Stone leads SU's high-energy physics group, which is part of a larger group of scientists (the LHCb collaboration) that run an experiment at CERN. The National Science Foundation (NSF) funds Stone's research group.

"It is impressive to see such a forefront physics result produced so soon after data-taking commenced at the LHC," said Moishe Pripstein, program director for the NSF's Elementary Particle Physics program.

"These results are a tribute both to the ingenuity of the international collaboration of scientists and the discovery potential of the LHC."

Scientists are eager to study these special B mesons because of their potential for yielding information about the relationship between matter and antimatter moments after the Big Bang, as well as yet-to-be described forces that resulted in the rise of matter over antimatter.

"We know when the universe formed from the Big Bang, it had just as much matter as antimatter," Stone says. "But we live in a world predominantly made of matter, therefore, there had to be differences in the decaying of both matter and antimatter in order to end up with a surplus of matter."

All matter is composed of atoms, which are composed of protons (positive charge), electrons (negative charge) and neutrons (neutral). The protons and neutrons are composed, in turn, of even smaller particles called quarks. Antimatter is composed of antiprotons, positrons (the opposite of electrons), antineutrons, and thus anti-quarks.

While antimatter generally refers to sub-atomic particles, it can also include larger elements, such as hydrogen or helium. It is generally believed that the same rules of physics should apply to both matter and antimatter and that both should occur in equal amounts in the universe. That they don't play by the same rules or occur in equal amounts are among the greatest unsolved problems in physics today.

B mesons are a rare and special subgroup of mesons composed of a quark and anti-quark. While B mesons were common after the Big Bang, they are not believed to occur in nature today and can only be created and observed under experimental conditions in the LHC or other high-energy colliders.

Because these particles don't play by the same rules of physics as most other matter, scientists believe B mesons may have played an important role in the rise of matter over antimatter. The particles may also provide clues about the nature of the forces that led to this lack of symmetry in the universe.

"We want to figure out the nature of the forces that influence the decay of these [B meson] particles," Stone says. "These forces exist, but we just don't know what they are. It could help explain why antimatter decays differently than matter."

In 2009, SU's experimental high-energy physics group received more than $3.5 million from the NSF through the American Recovery and Reinvestment Act (ARRA) for its research as part of the LHCb collaboration at CERN. The LHCb, one of four large particle detectors located in the LHC ring, is dedicated to searching for new types of fundamental forces in nature.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Syracuse University
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TIME AND SPACE
The Importance Of Being Magnetized
Moffett Field CA (SPX) Mar 23, 2011
Our nearest planetary neighbors, Mars and Venus, have no oceans or lakes or rivers. Some researchers have speculated that they were blown dry by the solar wind, and that our Earth escaped this fate because its strong magnetic field deflects the wind. However, a debate has arisen over whether a magnetic field is any kind of shield at all. The controversy stems from recent observations that ... read more







TIME AND SPACE
Final Countdown Is Underway For Second Ariane 5 Flight Of 2011

Next Ariane 5 Mission Ready For March 30 Liftoff

Another Ariane 5 Completes Its Initial Build-Up At The Spaceport

Two Ariane 5 And One Soyuz Flights Are Now Being Prepared

TIME AND SPACE
Study Of 'Ruiz Garcia' Rock Completed

Next Mars Rover Gets A Test Taste Of Mars Conditions

Alternatives Have Begun In Bid To Hear From Spirit

Opportunity Completes Study Of Ruiz Garcia Rock

TIME AND SPACE
84 Teams To Compete In NASA Great Moonbuggy Race

A New View Of Moon

Super Full Moon

LRO Delivers Treasure Trove Of Data

TIME AND SPACE
Later, Uranus: New Horizons Passes Another Planetary Milestone

Can WISE Find The Hypothetical Tyche In Distant Oort Cloud

Theory: Solar system has another planet

Launch Plus Five Years: A Ways Traveled, A Ways To Go

TIME AND SPACE
White Dwarfs Could Be Fertile Ground For Other Earths

NASA Announces 2011 Carl Sagan Fellows

Report Identifies Priorities For Planetary Science 2013-2022

Planetary Society Statement On Planetary Science Decadal Survey For 2013-2022

TIME AND SPACE
TEXUS 49 Lifts Off With Four German Experiments On Board

A Reusable Manned Deep - Space Craft

NASA's Successful 'Can Crush' Will Aid Heavy-Lift Rocket Design

XCOR And ULA Demonstrate Revolutionary Rocket Engine Nozzle Technology

TIME AND SPACE
What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

China Expects To Launch Fifth Lunar Probe Chang'e-5 In 2017

TIME AND SPACE
When Is An Asteroid Not An Asteroid

Stardust Fires Up Main Engine For Final Burn

Dawn Opens Its Eyes, Checks Its Instruments

ESA Remembers The Night Of The Comet


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement