Space Travel News  
OIL AND GAS
Producing hydrogen using less energy
by Staff Writers
Jena, Germany (SPX) Jun 23, 2021

Dr. Laith Almazahreh is investigating the mechanism of electrocatalytic hydrogen formation with a nature-inspired model compound at the Friedrich Schiller University Jena. The electrochemical cell contains a solution of this catalytically active compound, which was used to produce hydrogen.

The way in which a compound inspired by nature produces hydrogen has now been described in detail for the first time by an international research team from the University of Jena, Germany and the University of Milan-Bicocca, Italy. These findings are the foundation for the energy-efficient production of hydrogen as a sustainable energy source.

There are naturally occurring microorganisms that produce hydrogen, using special enzymes called hydrogenases. "What is special about hydrogenases is that they generate hydrogen catalytically. Unlike electrolysis, which is usually carried out industrially using an expensive platinum catalyst, the microorganisms use organometallic iron compounds," explains Prof. Wolfgang Weigand from the Institute of Inorganic and Analytical Chemistry at the University of Jena in Germany.

"As an energy source, hydrogen is naturally of great interest. That's why we want to understand exactly how this catalytic process takes place," he adds.

In the past, numerous compounds have already been produced worldwide that are chemically modelled on the naturally occurring hydrogenases. In cooperation with the university of Milan, Weigand and his team in Jena have now produced a compound that has yielded entirely new insights into the catalysis process.

"As in nature, our model is based on a molecule that contains two iron atoms. Compared with the natural form, however, we changed the chemical environment of the iron in a specific way. To be precise, an amine was replaced by a phosphine oxide with similar chemical properties. We therefore brought the element phosphorus into play."

Detailed insight into electrocatalytic hydrogen production
This enabled Weigand and his team to better understand the process of hydrogen formation. Water is composed of positively charged protons and negatively charged hydroxide ions.

"Our goal was to understand how these protons form hydrogen. However, the proton donor in our experiments was not water, but an acid," Weigand says. "We observed that the proton of the acid is transferred to the phosphine oxide of our compound followed by a proton release to one of the iron atoms. A similar process would also be found in the natural variant of the molecule," he adds.

In order to balance the proton's positive charge and ultimately produce hydrogen, negatively charged electrons were introduced in the form of electric current. With the help of cyclic voltammetry and simulation software developed at the University of Jena, the individual steps in which these protons were finally reduced to free hydrogen were examined.

"During the experiment, we could actually see how the hydrogen gas rose from the solution in small bubbles," notes Weigand. "The experimental measurement data from the cyclic voltammetry and the simulation results were then used by the research team in Milan for quantum chemical calculations," adds Weigand.

"This enabled us to propose a plausible mechanism for how the entire reaction proceeds chemically to produce the hydrogen - and this for each individual step of the reaction. This has never been done before with this level of accuracy." The group published the results and the proposed reaction pathway in the renowned journal "ACS Catalysis".

The goal: hydrogen through solar energy
Building on these findings, Weigand and his team now want to develop new compounds that can not only produce hydrogen in an energy-efficient way, but also use sustainable energy sources to do so.

"The goal of the Transregio Collaborative Research Centre 234 'CataLight', of which this research is a part, is the production of hydrogen by splitting water with the use of sunlight," Weigand explains. "With the knowledge gained from our research, we are now working on designing and investigating new catalysts based on the hydrogenases, which are ultimately activated using light energy."

Research paper


Related Links
Friedrich-Schiller-Universitaet Jena
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
Unitized regenerative fuel cells for improved hydrogen production and power generation
Seoul, South Korea (SPX) Jun 18, 2021
Green hydrogen, a source of clean energy that can be generated without using fossil fuels, has recently gained immense attention as it can be potentially used to promote carbon neutrality. Korean researchers have succeeded in improving the efficiency of unitized regenerative fuel cells that can be used to efficiently produce green hydrogen and generate power. The unitized regenerative fuel cells boast of hydrogen production and fuel cell modes. They are eco-friendly, cost-effective, and independen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
OIL AND GAS
Mars rover to move south after testing

China reveals photos taken by Mars rover

Perseverance Rover Begins Its First Science Campaign on Mars

NASA's Mars helicopter Ingenuity flies for 7th time

OIL AND GAS
SwRI awarded Lunar lander investigation contract

Lunar samples record impact 4.2 billion years ago

NASA Chief Predicts US Race with China to Put Next Human on Moon

Brazil becomes first South American partner to NASA's Artemis Accords

OIL AND GAS
Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede

OIL AND GAS
SpaceML.org aims to accelerate AI application in space science and exploration

Liquid water on exomoons of free-floating planets

Star's death will play a mean pinball with rhythmic planets

Connecting a star's chemical composition and planet formation

OIL AND GAS
Turkey invites Russia to take part in construction of country's spaceport

Boost for UK space sector as new facility offers cheaper and greener rocket testing

Debris from carrier rocket drop safely

NASA, SpaceX Update Crew Launch and Return Dates

OIL AND GAS
Successful program ignited by modest spark of an idea

Astronauts board China's new space station for first time

Fresh group of astronauts readying for orbit

First astronauts arrive at China's space station

OIL AND GAS
NASA approves further development of asteroid hunter

Asteroid 16 Psyche might not be what scientists expected

Earth's meteorite impacts over past 500 million years tracked

NASA's OSIRIS-REx celebrates perfect departure maneuver from Asteroid Bennu









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.