Space Travel News  
FARM NEWS
Predicting the effect of climate change on crop yields
by Staff Writers
Urbana IL (SPX) Jan 09, 2018


This photo shows Italian ryegrass (left), sorghum-Sudangrass (center), and annual ryegrass + red clover (right) in test plots.

Scientists now have a new tool to predict the future effects of climate change on crop yields.

Researchers from University of Illinois are attempting to bridge two types of computational crop models to become more reliable predictors of crop production in the U.S. Corn Belt.

"One class of crop models is agronomy-based and the other is embedded in climate models or earth system models. They are developed for different purposes and applied at different scales," says Kaiyu Guan, an environmental scientist at the University of Illinois and the principal investigator on the research.

"Because each has its own strengths and weaknesses, our simple idea is to combine the strengths of both types of models to make a new crop model with improved prediction performance."

Guan and his research team implemented and evaluated a new maize growth model, represented as the CLM-APSIM model, by combining superior features in both Community Land Model (CLM) and Agricultural Production Systems sIMulator (APSIM).

"The original maize model in CLM only has three phenological stages, or life cycles. Some important developmental stages such as flowering are missing, making it impossible to apply some critical stresses, such as water stress or high temperature at these specific developmental stages," says Bin Peng, a postdoctoral researcher in Guan's lab and also the lead author.

"Our solution is incorporating the life cycle development scheme of APSIM, which has 12 stages, into the CLM model. Through this integration, stresses induced by high temperature, soil water and nitrogen deficits, can be taken into account in the new model."

Peng says they chose CLM as the hosting framework to implement the new model because it is more process-based and can be coupled with climate models.

"This is important as the new tool can be used to investigate the two-way feedback between an agroecosystem and a climate system in our future studies."

In addition to replacing the original maize phenology model in CLM with that from the APSIM model, the researchers have made several other innovative improvements in the new model. A new carbon allocation scheme and a grain number simulation scheme were added, as well as a refinement to the original canopy structure scheme.

"The most alluring improvement is that our new model is closer to getting the right yield with the right mechanism," says Guan.

"The original CLM model underestimates above-ground biomass but overestimates the harvest index of maize, leading to apparent right-yield simulation with the wrong mechanism. Our new model corrected this deficiency in the original CLM model."

Peng adds that the phenology scheme of APSIM is quite generic.

"We can easily extend our new model to simulate the growth processes of other staple crops, such as soybeans and wheat. This is definitely in our plan and we are already working on it.

"All the work was conducted on Blue Waters, a powerful petascale supercomputer at the National Center for Supercomputing Applications (NCSA) on the University of Illinois campus," says Peng.

"We are currently working on parameter sensitivity analysis and Bayesian calibration of this new model and also on a high resolution regional simulation over the U.S. Corn Belt, all of which would not be possible without the precious computational resources provided by Blue Waters."

Research Report: "Improving maize growth processes in the community land model: Implementation and evaluation"

FARM NEWS
Warming to force winemakers, growers to plant different varieties
(UPI) Jan 2, 2018
Global warming is likely to force many winemakers and winegrowers to cultivate new grape varieties, according to a new study. Unfortunately, many wine producers are reluctant to change. To help vineyards adapt, scientists say more work needs to be done to understand the diversity of wine grapes and their ability to thrive in different climes. "What we're interested in talking abo ... read more

Related Links
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
FARM NEWS
Opportunity takes extensive imagery to decide where to go next

Mars: Not as dry as it seems

Mars' surface water - the truth is out there

Thirsty rocks may contain the missing water of Mars

FARM NEWS
Astronauts: Trump's proposed Lunar mission will take time

China Prepares for Breakthrough Chang'e 4 Moon Landing in 2018

China solicits messages to be sent to moon

Thales Alenia Space signs 3 contracts for NASA's deep space exploration

FARM NEWS
New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

FARM NEWS
Discovering the structure of RNA

'SHARKs' will help Large Binocular Telescope hunt for Exoplanets

Which came first: Complex life or high atmospheric oxygen?

Scientists directly observe living bacteria in polar ice and snow

FARM NEWS
Orbital ATK signs rocket development deal with US Air Force

Triumph expands contract for Dream Chaser spacecraft landing gear system

China tests new ballistic missiles with hypersonic glide vehicles

One Small Step: Massive Stratolaunch Aircraft Conducts First Taxi Tests

FARM NEWS
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

FARM NEWS
NASA image showcases Ceres mountain named for Kwanzaa

Development on muon beam analysis of organic matter in samples from space

Arecibo radar returns with asteroid Phaethon images

Alien object Oumuama is a natural body transiting our solar system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.