Space Travel News  
INTERNET SPACE
Popping microbubbles help focus light inside the body
by Staff Writers
Pasadena CA (SPX) Dec 09, 2015


Medical grade albumin encapsulated gas microspheres are imaged with a 20X microscope. Image courtesy Haowen Ruan, Mooseok Jang, and Changhuei Yang/Caltech. For a larger version of this image please go here.

A new technique developed at Caltech that uses gas-filled microbubbles for focusing light inside tissue could one day provide doctors with a minimally invasive way of destroying tumors with lasers, and lead to improved diagnostic medical imaging.

The primary challenge with focusing light inside the body is that biological tissue is optically opaque. Unlike transparent glass, the cells and proteins that make up tissue scatter and absorb light.

"Our tissues behave very much like dense fog as far as light is concerned," says Changhuei Yang, professor of electrical engineering, bioengineering, and medical engineering. "Just like we cannot focus a car's headlight through fog, scientists have always had difficulty focusing light through tissues."

To get around this problem, Yang and his team turned to microbubbles, commonly used in medicine to enhance contrast in ultrasound imaging.

The gas-filled microbubbles are encapsulated by thin protein shells and have an acoustic refractive index - a property that affects how sound waves propagate through a medium - different from that of living tissue. As a result, they respond differently to sound waves.

"You can use ultrasound to make microbubbles rapidly contract and expand, and this vibration helps distinguish them from surrounding tissue because it causes them to reflect sound waves more effectively than biological tissue," says Haowen Ruan, a postdoctoral scholar in Yang's lab.

In addition, the optical refractive index of microbubbles is not the same as that of biological tissue. The optical refractive index is a measure of how much light rays bend when transitioning from one medium (a liquid, for example) to another (a gas).

Yang, Ruan, and graduate student Mooseok Jang developed a novel technique called time-reversed ultrasound microbubble encoded (TRUME) optical focusing that utilizes the mismatch between the acoustic and optical refractive indexes of microbubbles and tissue to focus light inside the body. First, microbubbles injected into tissue are ruptured with ultrasound waves.

By measuring the difference in light transmission before and after such an event, the Caltech researchers can modify the wavefront of a laser beam so that it is focuses on the original locations of the microbubbles. The result, Yang explains, "is as if you're searching for someone in a dark field, and suddenly the person lets off a flare. For a brief moment, the person is illuminated and you can home in on their location."

In a new study, published online November 24, 2015, in the journal Nature Communications, the team showed that their TRUME technique could be used as an effective "guidestar" to focus laser beams on specific locations in a biological tissue. A single, well-placed microbubble was enough to successfully focus the laser; multiple popping bubbles located within the general vicinity of a target functioned as a map for the light.

"Each popping event serves as a road map for the twisting light trajectories through the tissue," Yang says.

"We can use that road map to shape light in such a way that it will converge where the bubbles burst."

If TRUME is shown to work effectively inside living tissue - without, for example, any negative effects from the bursting microbubbles - it could enable a range of research and medical applications. For example, by combining the microbubbles with an antibody probe engineered to seek out biomarkers associated with cancer, doctors could target and then destroy tumors deep inside the body or detect malignant growths much sooner.

"Ultrasound and X-ray techniques can only detect cancer after it forms a mass," Yang says. "But with optical focusing, you could catch cancerous cells while they are undergoing biochemical changes but before they undergo morphological changes."

The technique could take the place of other of diagnostic screening methods. For instance, it could be used to measure the concentrations of a protein called bilirubin in infants to determine their risk for jaundice. "Currently, this procedure requires a blood draw, but with TRUME, we could shine a light into an infant's body and look for the unique absorption signature of the bilirubin molecule," Ruan says.

In combination with existing techniques that allow scientists to activate individual neurons in lab animals using light, TRUME could help neuroscientists better understand how the brain works. "Currently, neuroscientists are confined to superficial layers of the brain," Yang says. "But our method of optical focusing could allow for a minimally invasive way of probing deeper regions of the brain."

The paper is entitled "Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded (TRUME) light."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
California Institute of Technology
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
World's first washable smartphone to debut in Japan
Tokyo (AFP) Dec 4, 2015
Tired of those unsightly smudges and other dirt on your bacteria-laden smartphone? A Japanese firm says it has the solution with what it describes the world's first smartphone that can be washed with soap and water. Waterproof smartphones have been on the market for a while. But telecom company KDDI says its new "Digno rafre" phone - to be launched in Japan next week - is the only one ... read more


INTERNET SPACE
DXL-2: Studying X-ray emissions in space

Arianespace selected to launch Azerspace-2/Intelsat 38 satellites

"Cyg"-nificant Science Launching to Space Station

Flight teams prepare for LISA Pathfinder liftoff

INTERNET SPACE
Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

ExoMars prepares to leave Europe for launch site

INTERNET SPACE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

INTERNET SPACE
New Horizons documents one rotation of Charon

Tyson weighs in on New Horizons' Pluto discoveries

Composite images compare sunlit faces of Pluto

Astronomers spot most distant object in the solar system

INTERNET SPACE
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

INTERNET SPACE
Progress continues on test version of SLS Connection Hardware

Laser Power: Russia develops energy beam for satellite refueling

Blue Origin lands booster rocket

US Engine Dilemma: No Space Without Moscow

INTERNET SPACE
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

INTERNET SPACE
Japan asteroid probe conducts 'Earth swing-by' in space quest

New law establishes ownership rights for space minerals

Who owns space

NEOWISE observes carbon gases in comets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.