Space Travel News  
SOLAR DAILY
Photosynthesis discovery could help design more efficient artificial solar cells
by Staff Writers
Atlanta GA (SPX) Aug 30, 2017


"Plants convert solar energy ultra-efficiently, considerably more efficiently than any artificial solar cell," Hastings said. "In photosynthesis, light comes in, an electron moves across a membrane and it doesn't come back. The big problem with artificial systems is the electron does go back much of the time. That's the real heart of why plants are so efficient at converting solar energy.

A natural process that occurs during photosynthesis could lead to the design of more efficient artificial solar cells, according to researchers at Georgia State University.

During photosynthesis, plants and other organisms, such as algae and cyanobacteria, convert solar energy into chemical energy that can later be used as fuel for activities. In plants, light energy from the sun causes an electron to rapidly move across the cell membrane.

In artificial solar cells, the electron often returns to its starting point and the captured solar energy is lost. In plants, the electron virtually never returns to its starting point, and this is why solar energy capture in plants is so efficient. A process called inverted-region electron transfer could contribute to inhibiting this "back electron transfer."

This study's findings, published in the journal Proceedings of the National Academy of Sciences, provide quantitative evidence that inverted-region electron transfer is responsible for the very high efficiency associated with solar energy conversion in photosynthesis.

Theoretical work on this phenomenon won Dr. Rudolph Marcus the 1992 Nobel Prize in Chemistry, but until now the mechanism has not been demonstrated in natural photosynthetic systems. The researchers studied photosynthetic reaction centers from the freshwater cyanobacterium species Synechocystis, which has the same photosynthetic machinery as plants.

"We were able to reveal the existence of the mechanism for the first time by inventing a method to allow us to successfully undertake the required challenging experiments," said Dr. Gary Hastings, lead author and professor in the Department of Physics and Astronomy at Georgia State.

"Our findings point to new ways on how one might think about designing artificial solar cells that can be used, for example, for producing hydrogen gas, which can be used as a clean and renewable fuel."

Solar energy, the cleanest and most abundant renewable energy source available, can be converted into thermal, chemical or electrical energy. By tapping into and converting a tiny fraction of the solar energy that falls on the earth each year, humans' increasing thirst for energy may be quenched, Hastings said. The solar market industry in the United States is working to scale up the production of solar technology and drive down costs, but it faces some challenges, according to the Solar Energy Industries Association.

"Plants convert solar energy ultra-efficiently, considerably more efficiently than any artificial solar cell," Hastings said. "In photosynthesis, light comes in, an electron moves across a membrane and it doesn't come back. The big problem with artificial systems is the electron does go back much of the time. That's the real heart of why plants are so efficient at converting solar energy.

"The details that underlie efficient solar energy conversion in plants are poorly understood. This is unfortunate, as detailed knowledge in this area is important to aid in quests to design economically viable artificial solar converters. Our work has revealed one design principle that is at play in efficient solar energy conversion in plants, and the hope is that this principle could be utilized in the design of new and better types of artificial solar cells."

Research paper

SOLAR DAILY
How 139 countries could be powered by 100 percent wind, water, and solar energy by 2050
Washington DC (SPX) Aug 28, 2017
The latest roadmap to a 100% renewable energy future from Stanford's Mark Z. Jacobson and 26 colleagues is the most specific global vision yet, outlining infrastructure changes that 139 countries can make to be entirely powered by wind, water, and sunlight by 2050 after electrification of all energy sectors. Such a transition could mean less worldwide energy consumption due to the efficien ... read more

Related Links
Georgia State University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

SOLAR DAILY
Call For Ideas For Research On The Deep Space Gateway

Analysis of a 'rusty' lunar rock suggests the moon's interior is dry

Roscosmos Approves Luna-25 Space Station Model in Moon Exploration Project

Moon's magnetic field lasted far longer than once believed

SOLAR DAILY
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets

SOLAR DAILY
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Scientists take first snapshots of a molecular propeller that runs at 100 degrees Celsius

SOLAR DAILY
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Falcon 9 launches from Vandenberg

SpaceX launches Taiwan's first home-built satellite

Indian Space Agency, Israeli counterpart to formalize strategic collaborations

SOLAR DAILY
ESA and Chinese astronauts train together

To boldly go where no startup has gone before

China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

SOLAR DAILY
NASA's asteroid sample return mission successfully adjusts course

Phoenicid meteor shower from dead comet arises again after 58 years

Dino-killing asteroid could have thrust Earth into 2 years of darkness

Large asteroid to safely pass Earth on September 1









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.