Space Travel News  
ENERGY TECH
'Perfectly frustrated' metal provides possible path to superconductivity
by Staff Writers
Ames IA (SPX) Nov 13, 2017


A diagram modeling competing or "frustrated" magnetic states in neighboring electrons. Condensed matter physicists use the term "frustrated" to describe a kind of magnet in which the spins fail to align into stable magnetic order. Their unique properties are of interest in the development of quantum computing and high-temperature superconductivity.

The U.S. Department of Energy's Ames Laboratory has discovered and described the existence of a unique disordered electron spin state in a metal that may provide a unique pathway to finding and studying frustrated magnets.

Condensed matter physicists use the term "frustrated" to describe a kind of magnet in which the spins fail to align into stable magnetic order. In perfectly frustrated magnets called spin liquids, the disordered magnetism of these materials persists even at very low temperatures, and their unique properties are of interest in the development of quantum computing and high-temperature superconductivity.

The materials investigated to search for this perfectly frustrated magnetic state are typically insulators. But Ames Laboratory researchers were able to define a "perfectly frustrated" state in a metallic material, CaCo1.86As2.

"Perfectly frustrated systems, ones that really cannot resolve their magnetic states, are difficult to find in the first place, but even more so in a metal," said Rob McQueeney, scientist at Ames Laboratory.

In insulating magnets, the interactions between spins that lead to frustration are set by the crystal structure of the lattice, and are relatively immutable. The discovery of this nearly perfectly frustrated metal provides a new avenue for tinkering with the magnetic interactions to achieve perfect frustration.

"Here, we have a little knob that we can tune. We know that some of these interactions that lead to frustration are mediated by conduction electrons, and we can tune a number of those very accurately--maybe you get a superconductor, maybe some other novel quantum state. There's a lot of promise there."

This research is further discussed in the paper "Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo2-yAs2," authored by A. Sapkota, B.G. Ueland, V.K. Anand, N.S. Sangeetha, D.L. Abernathy, M.B. Stone J.L. Niedziela, D.C. Johnston, A. Kreyssig, A.I. Goldman, and R.J. McQueeney; and published in Physical Review Letters.

ENERGY TECH
A novel layered superconductor based on tin and arsenic
Tokyo, Japan (SPX) Nov 10, 2017
The layered superconducting material is characterized by a crystal structure in which a SnAs layer (wherein Sn and As are two-dimensionally bonded to develop superconductivity) and a Na layer (the spacer layer) are alternately laminated. Considering that such a layered structure is similar to that of a cuprate- or iron-based high-temperature (high-Tc) superconductor, it is possible that in SnAs- ... read more

Related Links
Ames Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
ENERGY TECH
How long can microorganisms live on Mars

NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

ENERGY TECH
NASA Team Studies CubeSat Mission to Measure Water on the Moon

China and the US are both shooting for the moon

Russia locks up six for Moon flight simulation

Low-cost clocks for landing on the Moon

ENERGY TECH
Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

ENERGY TECH
Astronomers See Moving Shadows Around Planet-Forming Star

Scientists find potential 'missing link' in chemistry that led to life on earth

18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets

ENERGY TECH
The state of commercial spaceports in 2017

Orbital ATK Successfully Tests First Motor Case for Next Generation Launch Vehicle

Orbital ATK launches eighth cargo mission to space

Vega launches Earth observation satellite for Morocco

ENERGY TECH
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

ENERGY TECH
Dawn Explores Ceres' Interior Evolution

Site of asteroid impact changed the history of life

Unlucky dinosaurs: Scientists say asteroid had 13 percent chance of triggering extinction

Return of the Comet: 96P Spotted by ESA, NASA Satellites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.