Subscribe free to our newsletters via your
. Space Travel News .




BIO FUEL
Palm Oil Massive Source of Carbon Dioxide
by Staff Writers
New Haven CT (SPX) Oct 11, 2012


In 2010 alone, land-clearing for oil palm plantations in Kalimantan emitted more than 140 million metric tons of carbon dioxide, an amount equivalent to annual emissions from 28 million vehicles.

Expanding production of palm oil, a common ingredient in processed foods, soaps and personal care products, is driving rainforest destruction and massive carbon dioxide emissions, according to a new study by Yale and Stanford researchers.

The study, published in the journal Nature Climate Change, shows that deforestation for the development of oil palm plantations in Indonesian Borneo is becoming a globally significant source of carbon dioxide emissions.

Plantation expansion is projected to pump more than 558 million metric tons of carbon dioxide into the atmosphere in 2020, an amount greater than all of Canada's current fossil fuel emissions.

Indonesia is the leading producer of palm oil and palm kernel oil, which together account for more than 30 percent of the world's vegetable oil use and can be used for biodiesel. Most of Indonesia's oil palm plantation expansion is occurring on the island of Borneo, also known as Kalimantan, which occupies a land area nearly the size California and Florida combined.

Plantation leases, covering 32 percent of Kalimantan's lowlands outside of protected areas, represent a major land bank that is slated for development over the next decade, according to the study.

In 2010 alone, land-clearing for oil palm plantations in Kalimantan emitted more than 140 million metric tons of carbon dioxide, an amount equivalent to annual emissions from 28 million vehicles.

Home to the world's third-largest tropical forest area, Indonesia is also one of the world's largest emitters of greenhouse gasses, due to rapid loss of carbon-rich forests and peatlands. Since 1990, development of oil palm plantations has cleared about 16,000 square kilometers of Kalimantan's primary and logged forested lands, an area about the size of Hawaii. This accounts for 60 percent of Kalimantan's total forest cover loss in that time, according to the study's authors.

"Despite contentious debate over the types and uses of lands slated for oil palm plantations, the sector has grown rapidly over the past 20 years," said project leader Lisa Curran, a professor of ecological anthropology at Stanford and a senior fellow at the Stanford Woods Institute for the Environment.

By combining field measurements with analyses of high-resolution satellite images, the study evaluated lands targeted for plantations and documented their carbon emissions when converted to oil palm.

The study's researchers generated the first comprehensive maps of oil palm plantation expansion from 1990 to 2010. Using new classification technology developed by study co-author Gregory Asner of the Carnegie Institution's Department of Global Ecology, the researchers quantified the types of land cleared for oil palm plantations, as well as carbon emissions and sequestration from oil palm agriculture.

"A major breakthrough occurred when we were able to discern not only forests and non-forested lands, but also logged forests, as well as mosaics of rice fields, rubber stands, fruit gardens and mature secondary forests used by smallholder farmers for their livelihoods," said Kimberly Carlson, a Yale doctoral student and lead author of the study.

"With this information, we were able to develop robust carbon bookkeeping accounts to quantify carbon emissions from oil palm development."

The research team gathered oil palm land lease records during interviews with local and regional governmental agencies. These records identify locations that have received approval and are allocated to oil palm companies. The total allocated leases spanned about 120,000 square kilometers, an area slightly smaller than Greece. Most leases in the study occupied more than 100 square kilometers, an area slightly larger than Manhattan.

Using these leases in combination with land cover maps, the team estimated future land-clearing and carbon emissions from plantations. Eighty percent of leases remained unplanted in 2010. If all of these leases were developed, more than a third of Kalimantan's lowlands would be planted with oil palm by 2020.

The research study, "Carbon Emissions from Forest Conversion by Kalimantan Oil Palm Plantations," was supported by the NASA Land Cover/Land-Use Change Program, the John D. and Catherine T. MacArthur Foundation, the Santa Fe Institute and the National Science Foundation.

.


Related Links
Yale School Forestry and Environmental Studies
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Super-microbes engineered to solve world environmental problems
Seoul, Korea (SPX) Oct 10, 2012
Environmental problems, such as depleting natural resources, highlight the need to establish a renewable chemical industry. Metabolic engineering enhances the production of chemicals made by microbes in so-called "cell factories". Next Monday, world class scientist Professor Sang Yup Lee of KAIST (Korea Advanced Institute of Science and Technology) will explain how metabolic engineering co ... read more


BIO FUEL
SpaceX Dragon Successfully Attaches To Space Station

Another Ariane 5 Enters Launch Campaign Queue

SpaceX capsule links up with space station: NASA

Assembled and poised for launch: Soyuz is ready with its two Galileo navigation satellites

BIO FUEL
Curiosity Update: Object Likely Benign Plastic from Curiosity Rover

First Scoopful A Success

Checking a Bright Object on the Ground

China to collect samples from Mars by 2030: Xinhua

BIO FUEL
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

BIO FUEL
Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

BIO FUEL
Candels Team Discovers Dusty Galaxies At Ancient Epoch With Hubble Space Telescope

Large water reservoirs at the dawn of stellar birth

Comet crystals found in a nearby planetary system

The Magnetic Wakes of Pulsar Planets

BIO FUEL
India testfires Mars mission engine

ATK Awarded $50 Million Contract for NASA's Advanced Concept Booster Development for SLS

Rotors seen as method of spacecraft return

ATK and NASA Showcase Cost-Saving Upgrades for Space Launch System Solid Rocket Boosters

BIO FUEL
ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

BIO FUEL
Asteroid fragments could hint at the origin of the solar system

A New Dawn For NASA's Asteroid Explorer

Troughs Suggest Stunted Planetary Development Of Vesta

Mysterious Case of Asteroid Oljato's Magnetic Disturbance




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement