Space Travel News  
MARSDAILY
Opportunity Mars Rover Goes Six-Wheeling up a Ridge
by Staff Writers
Pasadena CA (JPL) Feb 26, 2016


This scene from NASA's Mars Exploration Rover Opportunity looks upward at "Knudsen Ridge" from the valley below. Image courtesy NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. For a larger version of this image please go here.

NASA's senior Mars rover, Opportunity, is working adeptly in some of the most challenging terrain of the vehicle's 12 years on Mars, on a slope of about 30 degrees. Researchers are using Opportunity this month to examine rocks that may have been chemically altered by water billions of years ago. The mission's current targets of investigation are from ruddy-tinted swaths the researchers call "red zones," in contrast to tan bedrock around these zones.

The targets lie on "Knudsen Ridge," atop the southern flank of "Marathon Valley," which slices through the western rim of Endeavour Crater. "We're hoping to take advantage of the steep topography that Mars provides us at Knudsen Ridge to get to a better example of the red zone material," said Steve Squyres of Cornell University, Ithaca, New York, principal investigator for the mission.

The red zone material crumbles easily. At locations in Marathon Valley where Opportunity already got a close look at it, the reddish bits are blended with other loose material accumulating in low locations. A purer exposure of the red zone material, such as some apparent on the ridge, would provide a better target for the Alpha Particle X-ray Spectrometer on Opportunity's arm, which reveals the chemical composition of rocks and soil.

Opportunity began climbing Knudsen Ridge in late January with two drives totaling 31 feet (9.4 meters). The wheels slipped less than 20 percent up slopes as steep as 30 degrees, the steepest the rover has driven since its first year on Mars in 2004. The slip is calculated by comparing the distance the rotating wheels would have covered if there were no slippage to the distance actually covered in the drive, based on "visual odometry" imaging of the terrain the rover passes as it drives.

"Opportunity showed us how sure-footed she still is," said Mars Exploration Rover Project Manager John Callas at NASA's Jet Propulsion Laboratory, Pasadena, California. "The wheel slip has been much less than we expected on such steep slopes."

The rover made additional progress toward targets of red-zone material on Knudsen Ridge with a drive on Feb. 18.

Knudsen Ridge forms a dramatic cap overlooking the 14-mile-wide (22-kilometer-wide) Endeavour Crater. Its informal naming honors the memory of Danish astrophysicist and planetary scientist Jens Martin Knudsen (1930-2005), a founding member of the science team for Opportunity and the twin rover Spirit. "This ridge is so spectacular, it seemed like an appropriate place to name for Jens Martin," Squyres said.

Marathon Valley became a high-priority destination for the Opportunity mission when mineral-mapping observations by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), aboard NASA's Mars Reconnaissance Orbiter, located clay minerals (a type of phyllosilicate) in this valley. Clay minerals often form in the presence of water, which is why this is such a promising area of exploration.

Opportunity found evidence of ancient water shortly after landing, but there were signs that the water would have been more highly acidic. The investigation in Marathon Valley could add understanding about the ancient environmental context for the presence of non-acidic water, a factor favorable for microbial life, if any has ever existed on Mars.

"The locations of red zones in Marathon Valley correlate closely with the phyllosilicate signature we see from orbit," Squyres said. "That alone is not a smoking gun. We want to determine what it is about their chemistry that sets them apart and what it could have to do with water."

To test the idea that water affected the red zone material, the experiment underway aims to compare the chemistry of that material to the chemistry of the surrounding tan bedrock, which could represent an unaltered baseline. Opportunity used its diamond-toothed rock abrasion tool last month to scrape the crust off a tan bedrock target for an examination of the chemistry inside the rock.

The team is accomplishing productive science with Opportunity while avoiding use of the rover's flash memory, which was linked to several unplanned computer reboots last year. The only data being received from Opportunity is what can be transmitted each day before the solar-powered rover shuts down for energy-conserving overnight "sleep."

A panorama of Knudsen Ridge is online here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Mars Rovers at JPL
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
Opportunity Taking Panoramic Views and Prepping for Science
Pasadena CA (JPL) Feb 19, 2016
Opportunity is exploring 'Marathon Valley' on the rim of Endeavour crater. The rover is up on very steep slopes to reach high-value science targets on 'Knudsen Ridge.' For the past week, Opportunity has been collecting extensive Pancam panoramas of the location all around Knudsen Ridge. One important purpose is to collect detailed imagery of the surface targets that the rover will ap ... read more


MARSDAILY
SpaceX warns of failure in Wednesday's rocket landing

SpaceX postpones rocket launch until Thursday

Russian rocket engines ban could leave US space program in limbo

Launcher and satellite preparations continue for Ariane 5's mission with EUTELSAT 65 West A

MARSDAILY
Jarosite in the Noctis Labyrinthus Region of Mars

Trace Gas Orbiter and Schiaparelli are joined

Footprints of a martian flood

Russia plans return to Mars, Moon despite money woes

MARSDAILY
New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

NASA releases strange 'music' heard by 1969 astronauts

NASA chooses ASU to design and operate special satellite

Chinese scientists invent leak detection system for moon exploration

MARSDAILY
Search narrows for Planet Nine

Pluto's 'Hulk-like' Moon Charon: A Possible Ancient Ocean?

Putting Pluto's Geology on the Map

New Horizons Could Help Us Locate Possible Planets Beyond Neptune

MARSDAILY
Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Longest-Lasting Stellar Eclipse Discovered

Astronomers take images of an exoplanet changing over time

MARSDAILY
Welding Wonder Delivers Confidence for SLS Core Stage

Aerojet Rocketdyne to develop high-powered Nested Hall Thruster system

Simplifying supersonic nozzle pressure monitoring

SSL Advances Solar Electric Propulsion Capabilities

MARSDAILY
China's moon lander Chang'e-3 enters 28th lunar day

Staying Alive on Tiangong 2

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

MARSDAILY
Should we work together in the race to mine the solar system

NASA Invites Public to Send Artwork to an Asteroid

Puzzling asteroid observations explained by destruction of asteroids close to Sun

NASA Report Details Expert Team Investigation of Asteroid Redirect Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.