Space Travel News  
INTERNET SPACE
One of the world's fastest cameras films motion of electrons
by Staff Writers
Kiel, Germany (SPX) Dec 27, 2018

With its ultrafast light rays, the Kiel system is one of the fastest and most powerful in the world. (lower panel) Film recordings show for the first time how the energy distribution in a graphite sample changes in the ultrashort period of 50 femtoseconds.

During the conversion of light into electricity, such as in solar cells, a large part of the input light energy is lost. This is due to the behaviour of electrons inside of materials. If light hits a material, it stimulates electrons energetically for a fraction of a second, before they pass the energy back into the environment.

Because of their extremely short duration of a few femtoseconds - a femtosecond is one quadrillionth of a second - these processes have hardly been explored to date. A team from the Institute of Experimental and Applied Physics at Kiel University (CAU), under the direction of Professor Michael Bauer and Professor Kai Robnagel, has now succeeded in investigating the energy exchange of the electrons with their environment in real time, and thereby distinguishing individual phases.

In their experiment, they irradiated graphite with an intense, ultrashort light pulse and filmed the impact on the behaviour of electrons. A comprehensive understanding of the fundamental processes involved could be important in future for applications in ultrafast optoelectronic components. The research team has published these findings in the current edition of the journal Physical Review Letters.

The properties of a material depend on the behaviour of its constituent electrons and atoms. A basic model to describe the behaviour of electrons is the concept of the so-called Fermi gas, named after the Nobel Prize winner Enrico Fermi. In this model, the electrons in the material are considered to be a gaseous system. In this way, it is possible to describe their interactions with each other.

In order to follow the behaviour of electrons on the basis of this description in real time, the Kiel research team developed an experiment for investigations with extreme temporal resolution: if a material sample is irradiated with an ultrafast pulse of light, the electrons are stimulated for a short period.

A second, delayed light pulse releases some of these electrons from the solid. A detailed analysis of these allows conclusions to be drawn regarding the electronic properties of the material after the first stimulation with light. A special camera films how the light energy introduced is distributed through the electron system.

Developed in Kiel:one of the world's fastest systems
The special feature of the Kiel system is its extremely high temporal resolution of 13 femtoseconds. This makes it one of the fastest electron cameras in the world. "Thanks to the extremely short duration of the light pulses used, we are able to film ultrafast processes live.

"Our investigations have shown that there is a surprising amount of stuff happening here," explained Michael Bauer, professor of ultrafast dynamics at the CAU. He developed the system, together with the working group of Kai Robnagel, professor of solid state research with synchrotron radiation.

In their current experiment, the research team irradiated a graphite sample with a short, intense light pulse of only seven femtoseconds duration. Graphite is characterised by a simple electronic structure. Thus, fundamental processes can be observed particularly clearly.

In the experiment, the impacting light particles - also called photons - disturbed the thermal equilibrium of the electrons. This equilibrium describes a condition in which a precisely-definable temperature prevails amongst the electrons. The Kiel research team then filmed the behaviour of the electrons, until a balance was restored after about 50 femtoseconds.

Numerous interactions within an extremely short period
In doing so, the scientists observed numerous interaction processes of excited electrons with the impacting photons, as well as atoms and other electrons in the material.

On the basis of the film footage, they could even distinguish different phases within this ultrashort period: first of all, the irradiated electrons absorbed the light energy of the photons in the graphite, and thereby transformed it into electrical energy.

Then the energy was distributed to other electrons, before they passed it on to the surrounding atoms. In this last process, the electrical energy is ultimately permanently converted into heat; the graphite warms up.

The experiments of the Kiel research team also confirm theoretical predictions for the first time. They enable a new perspective on a research topic which has hardly been investigated on this short time scale. "Through our new technical possibilities, these fundamental, complex processes can be observed directly for the first time," said Bauer. This approach could also be applied in the future to investigate and optimise ultrafast motions of light-agitated electrons in materials with promising optical properties.

Research Report: Ultrafast Formation of a Fermi-Dirac Distributed Electron Gas


Related Links
Kiel University
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


INTERNET SPACE
Apple unveils plan for $1 bn campus in Texas, US expansion
Washington (AFP) Dec 13, 2018
Apple unveiled plans Thursday for a $1 billion campus in Texas that will create jobs for the tech giant outside Silicon Valley, a move made without the fanfare of the recent Amazon headquarters bidding war. The new campus - which will be used for engineering and other functions, but not manufacturing - will be near the tech giant's existing facility in Austin and initially accommodate 5,000 new employees, with room to grow to 15,000. Currently, Apple employs some 6,200 in the Texas capital, th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
INTERNET SPACE
InSight places its first instrument on Mars

InSight Engineers Have Made a Martian Rock Garden

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

INTERNET SPACE
Israeli spacecraft gets special passenger before moon journey

NASA seeks US partners to develop reusable systems to land astronauts on Moon

Learning from lunar lights

China launches rover for first far side of the moon landing

INTERNET SPACE
Ultima Thule's First Mystery: Lack of a 'Light Curve'

New Horizons Takes the Inside Course to Ultima Thule

Most Distant Solar System Object Ever Observed

A nuclear-powered 'tunnelbot' to search for life on Jupiter's icy moon Europa

INTERNET SPACE
Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

Where did the hot Neptunes go

INTERNET SPACE
NZ-Dutch space startup raises 3M dollars

Roscosmos to submit super-heavy rocket project to Government

Elon Musk's SpaceX set to raise $500 mn: report

Russia to Decommission Carrier Vehicle With Ukraine-Made Components

INTERNET SPACE
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

INTERNET SPACE
ALMA gives passing comet its close-up

Space telescope detects water in a number of asteroids

Las Cumbres builds new instrument to study December comet

GMV leads the system that "drives" the HERA mission for planetary defence









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.