Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
One in, two out: Simulating more efficient solar cells
by Staff Writers
Davis CA (SPX) Jan 31, 2013


Computer simulations show that when a light particle (blue wave on left) hits a crystal of a high-pressure form of silicon, it releases two electron-hole pairs (red circles/green rings), which generate electric current. (Stefan Wippermann/UC Davis photo).

Using an exotic form of silicon could substantially improve the efficiency of solar cells, according to computer simulations by researchers at the University of California, Davis, and in Hungary. The work was published Jan. 25 in the journal Physical Review Letters.

Solar cells are based on the photoelectric effect: a photon, or particle of light, hits a silicon crystal and generates a negatively charged electron and a positively charged hole. Collecting those electron-hole pairs generates electric current.

Conventional solar cells generate one electron-hole pair per incoming photon, and have a theoretical maximum efficiency of 33 percent. One exciting new route to improved efficiency is to generate more than one electron-hole pair per photon, said Giulia Galli, professor of chemistry at UC Davis and co-author of the paper.

"This approach is capable of increasing the maximum efficiency to 42 percent, beyond any solar cell available today, which would be a pretty big deal," said lead author Stefan Wippermann, a postdoctoral researcher at UC Davis.

"In fact, there is reason to believe that if parabolic mirrors are used to focus the sunlight on such a new-paradigm solar cell, its efficiency could reach as high as 70 percent," Wippermann said.

Galli said that nanoparticles have a size of nanometers, typically just a few atoms across. Because of their small size, many of their properties are different from bulk materials.

In particular, the probability of generating more than one electron-hole pair is much enhanced, driven by an effect called "quantum confinement." Experiments to explore this paradigm are being pursued by researchers at the Los Alamos National Laboratory, the National Renewable Energy Laboratory in Golden, Colo., as well as at UC Davis.

"But with nanoparticles of conventional silicon, the paradigm works only in ultraviolet light," Wippermann said. "This new approach will become useful only when it is demonstrated to work in visible sunlight."

The researchers simulated the behavior of a structure of silicon called silicon BC8, which is formed under high pressure but is stable at normal pressures, much as diamond is a form of carbon formed under high pressure but stable at normal pressures.

The computer simulations were run through the National Energy Research Scientific Supercomputing Center at the Lawrence Berkeley Laboratory, which granted the project 10 million hours of supercomputer time.

The simulations demonstrated that nanoparticles of silicon BC8 indeed generate multiple electron-hole pairs per photon even when exposed to visible light.

"This is more than an academic exercise. A Harvard-MIT paper showed that when normal silicon solar cells are irradiated with laser light, the energy the laser emits may create a local pressure high enough to form BC8 nanocrystals. Thus, laser or chemical pressure treatment of existing solar cells may turn them into these higher-efficiency cells," said co-author Gergely Zimanyi, professor of physics at UC Davis.

Other authors of the paper are Marton Voros and Adam Gali at the Budapest University of Technology and Economics, Hungary. The work was funded by a National Science Foundation Solar Collaborative grant awarded to Zimanyi, Galli and colleagues at UC Davis and UC Santa Cruz in 2011. The project brings together experts in material science, chemistry, computer simulations and statistics to develop new approaches to solar power.

.


Related Links
University of California, Davis
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Black silicon can take efficiency of solar cells to new levels
Aalto, Finland (SPX) Jan 28, 2013
Scientists at Aalto University have demonstrated results that show a huge improvement in the light absorption and the surface passivation of silicon nanostructures. This has been achieved by applying atomic layer coating. The results advance the development of devices that require high sensitivity light response such as high efficiency solar cells. This method provides extremely good ... read more


SOLAR DAILY
Spacecom And Spacex Announce Agreement For Amos-6 Satellite Launch

S. Korea joins global space club with satellite launch

Russia Set for Year's First Baikonur Space Launch Feb. 5

First Ariane 5 For 2013 Ready For Loading

SOLAR DAILY
Ridges on Mars suggest ancient flowing water

Changes on Mars Caused by Seasonal Thawing of CO2

Is there life on Mars?

Opportunity At Work At Whitewater Lake

SOLAR DAILY
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

SOLAR DAILY
The PI's Perspective: The Seven-Year Itch

New Horizons Gets a New Year's Workout

Halfway Between Uranus and Neptune, New Horizons Cruises On

Dwarf planet Makemake lacks atmosphere

SOLAR DAILY
The Origin And Maintenance Of A Retrograde Exoplanet

New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

Earth-size planets common in galaxy

SOLAR DAILY
NASA Awards Space Launch System Advanced Development Grants

NASA Engineers Resurrect And Test Mighty F-1 Engine Gas Generator

Dextre Refuels Mock Satellite and Aces a Major Test for Space Robotics

Scientists create tractor beam

SOLAR DAILY
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

SOLAR DAILY
Commercial Asteroid Hunters Announce Plans For New Robotic Exploration Fleet

US company aims to 'harvest' asteroids

Comet of the Century?

Herschel intercepts asteroid Apophis




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement