Space Travel News  
Ocean Supergyre Link To Climate Regulator

Mr Ridgway says Tasmania figures as a critical converging point providing a northern boundary to the mid-water funnel that is bordered at latitudes near 50S. "The interconnected gyre system and the East Australian Current provide the mechanism by which SubAntarctic Mode Water and Antarctic Intermediate Water are distributed between the ocean basins," he says.
by Staff Writers
Canberra, Australia (SPX) Aug 20, 2007
Australian scientists have identified the missing deep ocean pathway - or 'supergyre' - linking the three Southern Hemisphere ocean basins in research that will help them explain more accurately how the ocean governs global climate. The new research confirms the current sweeping out of the Tasman Sea past Tasmania and towards the South Atlantic is a previously undetected component of the world climate system's engine-room - the thermohaline circulation or 'global conveyor belt'.

Wealth from Oceans Flagship scientist Ken Ridgway says the current, called the Tasman Outflow, occurs at an average depth of 800-1,000 metres and may play an important role in the response of the conveyor belt to climate change.

Published this month in Geophysical Research Letters the findings confirm that the waters south of Tasmania form a 'choke-point' linking the major circulation cells in the Southern Hemisphere oceans.

"In each ocean, water flows around anticlockwise pathways or 'gyres' the size of ocean basins," Mr Ridgway says. "These gyres are the mechanism that distribute nutrients from the deep ocean to generate life on the continental shelves and slopes. They also drive the circulation of the world's oceans, creating currents and eddies and help balance the climate system by transferring ocean heat away from the tropics toward the polar region."

He says the conventional picture of the Southern Hemisphere mid-latitude circulation comprises basin-wide but quite distinct gyres contained within the Indian, Pacific and Atlantic Oceans. However model simulations had suggested that these gyres are connected.

The CSIRO team analysed thousands of temperature and salinity data samples collected between 1950 and 2002 by research ships, robotic ocean monitors and satellites in the region between 60S and the Equator. They identified linkages between these gyres to form a global-scale 'supergyre' that transfers water to all three ocean basins.

Mr Ridgway and co-author Mr Jeff Dunn say identification of the supergyre improves the ability of researchers to more accurately explain how the ocean governs global climate.

Completed as part of the BLUElink ocean forecasting project, this research provides the missing deep-flow connection between the Pacific and Indian Oceans. It has long been known that north of Australia a system of currents in the ocean's upper 300m, called the Indonesian Throughflow, drains water from the Pacific into the Indian Ocean through the Indonesian archipelago - a process which influences Australian rainfall.

Mr Ridgway says Tasmania figures as a critical converging point providing a northern boundary to the mid-water funnel that is bordered at latitudes near 50S.

"The interconnected gyre system and the East Australian Current provide the mechanism by which SubAntarctic Mode Water and Antarctic Intermediate Water are distributed between the ocean basins," he says.

"The flows of these water masses have strong influences on the global climate and so monitoring changes in the transport of the Tasmanian connection may be an important measurement of the state of the global climate system.

"Recognising the scales and patterns of these subsurface water masses means they can be incorporated into the powerful models used by scientists to project how climate may change," he says.

Related Links
Wealth from Oceans Flagship
CSIRO Marine and Atmospheric Research
Water News - Science, Technology and Politics



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Safer Shipping By Predicting Sand Wave Behaviour
Amsterdam, Holland (SPX) Jul 13, 2007
Dutch researcher Joris van den Berg has developed a mathematical model to predict the movement of sand waves. Sand waves are formed by an interaction between the tidal current and sand. They are larger than sand ripples on the beach but smaller than sandbanks. Sand waves largely determine the shape of the sea floor in the southern part of the North Sea. A good predictive computer model would be a valuable tool for shipping and designers of offshore infrastructures.







  • India Wants To Launch First Reusuable Space Launcher By 2010
  • NASA Awards First Stage Contract For Ares Rockets
  • UC Experts Detail New Standard For Cleaner Transportation Fuels
  • Indigenous Cryogenic Stage Tested For Eight Minutes

  • Ariane 5 - Third Dual-Payload Launch Of 2007
  • Lockheed Martin Marks 33rd Consecutive A2100 Success With The Launch Of BSAT-3A
  • ILS to Launch Inmarsat Satellite On Proton Vehicle Next Spring
  • Russian Proton-M Rocket To Launch Japanese Telecoms Satellite

  • Shuttle Endeavour departs space station
  • Hurricane shortens Endeavour mission
  • Crew Holds Class In Space, Prepares For Possible Repair Work
  • NASA 'optimistic' no repair job needed on damaged shuttle tiles

  • Outside View: Obsolete space industry
  • Mastracchio And Williams Install New Station Control Moment Gyroscope (CMG)
  • Punctured astronaut's spacesuit cuts short spacewalk
  • Astronauts prepare for first spacewalk of Endeavour mission

  • In Search Of Interstellar Dragon Fire
  • Pioneering NASA Spacecraft Mark Thirty Years Of Flight
  • NASA says shuttle heat shield needs no repair
  • US shuttle to return early to avoid hurricane

  • At Least 3 Chinese Satellites Malfunctioning Since 2006
  • China reveals deadly threat to historic space flight
  • China Trains Rescue Teams For Third Manned Space Program
  • Chinese Astronauts Begin Training For Spacewalk

  • Drive-By-Wire And Human Behavior Systems Key To Virginia Tech Urban Challenge Vehicle
  • Successful Jules Verne Rendezvous Simulation At ATV Control Centre
  • Robotic Einstein Wows Spanish Technology Fair
  • Robotic Ankle For Amputees Is Developed

  • Gloomy Skies Show Signs of Clearing
  • Phoenix Adjusts Course Successfully For Journey To Mars
  • What Makes Mars Magnetic
  • Helping Phoenix Land

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement