. Space Travel News .




.
BIO FUEL
ORNL process improves catalytic rate of enzymes by 3,000 percent
by Staff Writers
Oak Ridge, TN (SPX) Apr 18, 2012

File image.

Light of specific wavelengths can be used to boost an enzyme's function by as much as 30 fold, potentially establishing a path to less expensive biofuels, detergents and a host of other products.

In a paper published in The Journal of Physical Chemistry Letters, a team led by Pratul Agarwal of the Department of Energy's Oak Ridge National Laboratory described a process that aims to improve upon nature - and it happens in the blink of an eye.

"When light enters the eye and hits the pigment known as rhodopsin, it causes a complex chemical reaction to occur, including a conformational change," Agarwal said. "This change is detected by the associated protein and through a rather involved chain of reactions is converted into an electrical signal for the brain."

With this as a model, Agarwal's team theorized that it should be possible to improve the catalytic efficiency of enzyme reactions by attaching chemical elements on the surface of an enzyme and manipulating them with the use of tuned light.

The researchers introduced a light-activated molecular switch across two regions of the enzyme Candida antarctica lipase B, or CALB - which breaks down fat molecules - identified through modeling performed on DOE's Jaguar supercomputer.

"Using this approach, our preliminary work with CALB suggested that such a technique of introducing a compound that undergoes a light-inducible conformational change onto the surface of the protein could be used to manipulate enzyme reaction," Agarwal said.

While the researchers obtained final laboratory results at industry partner AthenaES, computational modeling allowed Agarwal to test thousands of combinations of enzyme sites, modification chemistry, different wavelengths of light, different temperatures and photo-activated switches.

Simulations performed on Jaguar also allowed researchers to better understand how the enzyme's internal motions control the catalytic activity.

"This modeling was very important as it helped us identify regions of the enzyme that were modified by interactions with chemicals," said Agarwal, a member of ORNL's Computer Science and Mathematics Division.

"Ultimately, the modeling helped us understand how the mechanical energy from the surface can eventually be transferred to the active site where it is used to conduct the chemical reaction."

Agarwal noted that enzymes are present in every organism and are widely used in industry as catalysts in the production of biofuels and countless other every day products. Researchers believe this finding could have immense potential for improving enzyme efficiency, especially as it relates to biofuels.

Other authors of the paper, titled "Engineering a Hyper-catalytic Enzyme by Photoactivated Conformation Modulation," are Christopher Schultz and Sheldon Broedel Jr. of AthenaES, Aristotle Kalivretenos of Aurora Analytics and Brahma Ghosh, an independent consultant. The paper is available here.

Related Links
Oak Ridge National Laboratory
Bio Fuel Technology and Application News




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries



And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.



.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



BIO FUEL
Hot new manufacturing tool: A temperature-controlled microbe
Washington DC (SPX) Apr 18, 2012
Many manufacturing processes rely on microorganisms to perform tricky chemical transformations or make substances from simple starting materials. The authors of a study appearing in mBio, the online open-access journal of the American Society for Microbiology have found a way to control a heat-loving microbe with a temperature switch: it makes a product at low temperatures but not at high ... read more


BIO FUEL
A double arrival for Arianespace's next dual-payload Ariane 5 mission

Another weather satellite payload is readied for launch by Arianespace

Canadarm2 to Catch SpaceX's Dragon on Its Maiden Voyage to the ISS

How to Buy a Launch Vehicle

BIO FUEL
Photo Of NASA's Maven Spacecraft and Propellant Tank at Lockheed Martin

Dark regions on Mars may be volcanic glass

Martian impact craters may be hiding life

Russia to Go Back to the Moon Before Reaching for Mars

BIO FUEL
Russian Space Agency eyes Moon explorations

Russia postpones Luna-Glob moon mission

Russia Plans to Launch Lunar Rovers to Moon after 2020

Russia to explore moon

BIO FUEL
Herschel images extrasolar analogue of the Kuiper Belt

New Horizons on Approach: 22 AU Down, Just 10 to Go

BIO FUEL
ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

Study On Extrasolar Planet Orbits Suggests That Solar System Structure Is The Norm

BIO FUEL
Peaceful atom for distant space missions

Why do N. Korea's missile tests keep failing?

North Korean rocket launch fails, draws condemnation

N. Korea admits failure as world raps rocket launch

BIO FUEL
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

BIO FUEL
NASA's Swift Monitors Departing Comet Garradd

Herschel Spots Comet Massacre Around Nearby Star

Jupiter helps Halley's Comet give us more spectacular meteor displays

Russia Wants To Bind Satellite To Apophis Asteroid


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement