Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
Next-generation antireflection coatings could improve solar photovoltaic cell efficiency
by Staff Writers
Tampa, FL (SPX) Oct 29, 2012


Air and other gases have a refractive index very close to 1.0, but unfortunately aren't viable for thin-film optoelectronic applications. Among transparent dense materials suitable for use in thin-film optoelectronic applications, magnesium fluoride (MgF2) has the lowest refractive index (n=1.39); no dense materials with a lower refractive index are known to exist.

Photovoltaic cell efficiency may soon get a big boost, thanks to next-generation antireflection coatings crafted from nanomaterials capable of cutting down on the amount of light reflected away from a cell's surface.

Materials boasting a "tunable" refractive index have been developed within the past few years, and they show tremendous potential for photovoltaic applications. Professor E. Fred Schubert, of Rensselaer Polytechnic Institute's Department of Electrical, Computer, and Systems Engineering, is investigating ways to exploit this newly gained controllability and will present his findings at the upcoming AVS 59th International Symposium and Exhibition, held Oct. 28 - Nov. 2, in Tampa, Fla.

The refractive index is the property of a material that changes the speed of light, and is computed as the ratio of the speed of light in a vacuum to the speed of light through the material.

Among the most fundamental properties of optical materials, the refractive index determines important optical characteristics such as Fresnel reflection, Bragg reflection, Snell refraction, diffraction, and the phase and group velocity of light.

Air and other gases have a refractive index very close to 1.0, but unfortunately aren't viable for thin-film optoelectronic applications. Among transparent dense materials suitable for use in thin-film optoelectronic applications, magnesium fluoride (MgF2) has the lowest refractive index (n=1.39); no dense materials with a lower refractive index are known to exist.

In fact, for many years the range between 1.0 and 1.39 remained unexplored. But with the advent of tunable-refractive-index materials, that's changing. Schubert's research is based on tailoring transparent thin-film materials whose refractive index can be controlled.

"Optical thin-film materials with a refractive index as low as 1.05 have been demonstrated. Tunable-refractive-index materials are based on 'nanoporous' silicon dioxide (SiO2), indium-tin oxide (ITO), and titanium dioxide (TiO2), and we can precisely control porosity by using oblique-angle deposition - a technique in which the substrate is at non-normal angle of incidence with respect to the deposition source," says Schubert.

Schubert and colleagues used these materials to design and fabricate a four-layer antireflection coating. "The fabrication process of this coating is additive and purely physical, so it's fully compatible with current manufacturing processes of solar cells," he notes.

"Our customizable approach readily lends itself to the incorporation of antireflection coating design into solar cell device structures for application-specific requirements."

This four-layer antireflection coating is viable, readily applicable, and shows great promise for future generations of antireflection coating technology on solar cell devices.

.


Related Links
American Institute of Physics
AVS Symposium
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Scientists demonstrate high-efficiency quantum dot solar cells
Tampa, FL (SPX) Oct 29, 2012
Research shows newly developed solar powered cells may soon outperform conventional photovoltaic technology. Scientists from the National Renewable Energy Laboratory (NREL) have demonstrated the first solar cell with external quantum efficiency (EQE) exceeding 100 percent for photons with energies in the solar range. (The EQE is the percentage of photons that get converted into electrons within ... read more


SOLAR DAILY
SpaceX capsule completes successful first mission

S. Korea sets new window for rocket launch

Pleiades 1B joins its launcher at the Spaceport for Arianespace's Soyuz mission in November

S. Korea readies third bid to join global space club

SOLAR DAILY
Opportunity Undertakes Survey Drives Of Local Area

Assessing Drop-Off to Mars Rover's Observation Tray

Valles Marineris - the largest canyon in the Solar System

Curiosity Rover Collects Fourth Scoop of Martian Soil

SOLAR DAILY
Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

European mission to search for moon water

SOLAR DAILY
Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

SOLAR DAILY
New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

Most Planetary Systems are 'Flatter than Pancakes'

Glitch could end NASA planet search

SOLAR DAILY
ORBITEC's Rocket Engine Soars Above the Mojave Desert

First Space Launch System 'Pathfinder' Hardware Nearing Completion

S. Korea suspends rocket launch

Blue Origin Completes Pad Escape Test

SOLAR DAILY
China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

China launches civilian technology satellites

SOLAR DAILY
Whizzing Asteroid Turns Rocket Scientists' Heads

Lost asteroid rediscovered with a little help from ESA

First Evidence of Dynamo Generation in an Asteroid

Asteroid fragments could hint at the origin of the solar system




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement